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CAMUSS, a Symposium on Cellular
Automata in Geography and Urban
Studies

Nuno Norte Pinto

Cellular Automata (CA) models have been used in Geography and Urban Studies for
some decades now, becoming one of the most popular concepts in contemporary
spatial modeling.

CA models are today very sophisticated, having evolved significantly both in
theoretical and in practical terms, with many models already being used to support
policy design in different geographic contexts.

CA have gained a sound scientific presence in the Geography and Urban Studies
literature. A quick and non-exhaustive search on the Web of Knowledge gives us
more than 1900 papers on “urban” or “spatial” CA published since only 1991.
However, it seems that the discussion over CA mainly happened in the literature.
When many colleagues were asked if they could remember of one large, dedicated
meeting on CA in Geography and Urban Studies, they always gave the same answer:
they remembered none.

Despite some short and usually very local workshops about CA, and many parallel
sessions dedicated to CA, usually in the same Geography and Geocomputation
conferences, there is no memory of a larger meeting that had focused on the
complex scientific structure that CA already has.

Such a meeting is, in my opinion, essential, especially now, when new computation
capabilities are available, and when it is easier to handle larger and more
disaggregated datasets, increasing the simulation capacities of other modeling
concepts such as agent-based simulation.

I wish to welcome you to CAMUSS, the (first) International Symposium on Cellular
Automata Modeling for Urban and Spatial Systems.

CAMUSS was launched with a simple program: to bring together researchers who
have been and still are working on CA modeling applied to urban and spatial
systems.

CAMUSS aims to create the proper forum for a deep reflection on the scientific
history of CA in Geography and Urban Studies through the presentation of the state-
of-the-art research on CA, and to devise a new research agenda in this field for the
next years.
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In spite of the very high level of specification that CAMUSS was targeting — only
CA-linked submissions were accepted — it was really satisfying to be able to gather
such a significant group of contributions from all the corners of the world.

More than fifty contributions were submitted and more than forty were accepted to
the program, authored by more than ninety researchers.

The program has fourteen parallel sessions, each one focusing on a main topic
related to CA. Parallel sessions were scheduled to provide participants the proper
time to present their research and to have a fruitful discussion with an audience of
true experts on CA.

The program has three keynote lectures by three of the most influential researchers
and authors on CA:

= Professor Michael Batty, Director of CASA and Bartlett Professor of Planning,
University College London, United Kingdom;

=  Professor Helen Couclelis, Professor at the Department of Geography of the
University of California at Santa Barbara, United States of America;

=  Professor Roger White, Professor at the Department of Geography of the
Memorial University of Newfoundland, Canada.

This is what | believe to be the proper setting for having a deep discussion about the
history of CA as a modeling tool in Geography and Urban Studies, and about what
will be the future research on CA in the mid- and long-term.

The goal of CAMUSS was already accomplished by the quality of the work
presented in these Proceedings.

I would like to thank all the members of the Scientific Committee for their precious
help on evaluating the quality of the submissions.

I would also like to thank the important financial and logistic support provided by
our sponsors, namely the European Research Group on Spatial Simulation for Social
Sciences, S4, the Geography and Spatial Planning Research Centre of the University
of Luxembourg, the Gulbenkian Foundation, and ESRI, as well as the Centre for
Land Policy and Valuation of the Technical University of Catalonia, and the Centre
for Advanced Spatial Analysis at University College London. A word of gratitude is
also due to the Norte Region Planning and Regional Development Commission, as
well as to the Tourism Offices of Porto, Vila Nova de Gaia, and Douro for their
valuable support.

A final word is due to the members of the Organizing Committee, Joana Dourado
and Ana Natélio, for their dedication and contribution to the success of the
Symposium, and to Professor Helena Pina, for her valuable collaboration in
organizing the scientific component of our social program.

Bem hajam.”

¥ The traditional way to say “thank you all very much” in Portugal.
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Li et al., Development and applications of urban cellular automata in China

Development and applications of urban cellular
automata in China

Xia LI'; Yimin CHEN; Bin Al
1school of Geography and Planning, Sun Yat-sen
University, Guangzhou, 510275, PR
China;

Email: lixia@mail.sysu.edu.cn; lixia@graduate.hku.hk

Keywords: cellular automata, urban development, China

Abstract®

China has come to a new era of rapid urbanization and urban expansion. Since the
late 1990s, many studies on using cellular automata techniques have been carried out
to tackle urban and regional development problems. Cellular automata (CA) have
been used as a useful tool to support land use planning and policy analysis as well as
to explore scenarios for future development in this fast developing country. There is
a growing demand for the application of CA in some planning departments in major
Chinese cities. Especially, many applications are found in the coastal cities, such as
Guangzhou, Dongguan, Shenzhen, Shanghai and Beijing in China. Significant
modifications have been made so that CA can be suited to a lot of urban simulation
and planning tasks in this region. Much effort has been made to generate a high
degree of reality in urban simulation by using a richer set of GIS data for the
calibration. Some classical CA models have been established by Chinese scholars
who have used a variety of intelligent methods, such as MCE, ANN, and GA
methods, for calibrating these models.

1. Rapid urbanization and urban expansion in China

In the 20th century, rapid urbanization has become a typical geographical
phenomenon because of economic development and population growth around the
world. For example, the urban population increased from 220 million in 1900 to 732
million in 1950 (29% of the world’s population), and to 3.3 billion (the first time in
history over half of the world’s population) in 2007 (Potsiou, 2010). The growth
trend continues into the 21th century as 60% of the world’s population will be
urbanized by 2030 according to the report. This rush to the cities has resulted in
unprecedented urban expansion and land use changes in many fast growing regions,
associating with severe ecological, economic and social problems.

China’s urbanization before 1980s was slow and even stagnated during the
Cultural Revolution (1966-1976) (He and Wu 2005). The economic reforms under
Deng Xiaoping’s leadership broke many bottlenecks and strongly stimulate the

o4 . . . . .
This contribution has its references in an ‘Author-Date’ format.
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urban development. The policy of economic decentralization resulted in the
diversification of investment sources (e.g. foreign direct investments); while the land
leasing system became an effective way to bring local revenue and also the tactic to
attract investors to promote local economy (Wu 1998). In addition, the reforms in
household registration (hukou) system smoothed the urban-rural migration that
increased urban population and speeded up the urbanization process (Chan and
Zhang 1999). In post-reform China, rapid urban expansion was witnessed in the
coastal areas. It is reported that urban land increased 40-60% during 1990-1995 in
Pearl River Delta (60.11%), Yangtze River Delta (54.29%) and Beijing-Tianjin-
Tangshan zone (42.18%) (Tian et al. 2005). However, the fast urbanization paces
caused the serious problem of farmland loss in eastern China (Seto et al. 2000).
While in the hinterland, the quantity of arable land increased because of the change
of production conditions, economic benefits and climatic conditions (Liu et al.
2003).

2. Cellular automata for urban simulation and planning in China

A better understanding of these changes is important for tackling various urban
planning and environmental management issues in this fast growing country. There
is a demand to develop a kind of simulation models which can assist the complex
decision-making processes associated with the economic and development
transition. The fast emergence of geographical cellular automata (CA) in China has
been witnessed since the late 1990s. A number of CA models have been proposed to
solve the complex urban and regional development problems in this region. For
example, Wu (1998) developed a CA model, SimLand, to simulate rural-urban land
conversion by incorporating the multi-criteria evaluation (MCE) method. The
logistic regression method was proposed to calibrate CA models by using training
data (Wu 2002, Li et al. 2008). Li and Yeh (2002) proposed a neural network-based
CA (ANN-CA) model to reduce the influence of spatial autocorrelation in urban and
land use simulation. An advantage of this model is that spatial variables are not
necessarily required to be independent of each other. Attempts have also been made
by using genetic algorithms to calibrate CA models (Li et al. 2008). Recently, A
Geographical Simulation and Optimization System (GeoSOS) is proposed by Li et
al. (2011). GeoSOS is a computer-based system to simulate, predict, optimize, and
display geographical patterns and processes (downloaded at
http://www.geosimulation.cn/). As a bottom-up approach, GeoSOS consists of three
major integrated components, CA, ABMs, and SIMs. This system is equipped with
some common CA algorithms, such as MCE-CA, logistic-CA, PCA-CA, ANN-CA,
and Decision-tree-CA. It also provides spatial optimization algorithms (e.g.
facility-siting, path-finding, and area optimization) by modifying ant algorithms.

To present a review on applications of urban CA models in China, we used
Google Scholar to search international articles with the keyword combinations of
“cellular automata + land use change + China” and “cellular automata + urban +
China”. Thereafter the articles were manually filtered to match the topic. Finally, 44
articles were selected for this review. We have not included Chinese papers or books
in the analysis. For example, Zhou et al. (1998) published a Chinese hook titled
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“Geographical cellular automata” which should have some influences on the study
of cellular automata in China.

Table 1 lists these applications with the information of the model and the
validation method. Most of the CA applications are within those coastal cities in
eastern China. This is not surprised because this part of China is experiencing
the fast industrialization and urbanization processes (Seto and Fragkias 2005, Luo
and Wei 2009, Deng et al. 2010). However, the rapid urban development also gives
rise to a lot of ecological and environmental issues (Li et al. 2007, Deng et al.
2009, Fang et al. 2009). Therefore, these cities in eastern China can be the perfect
experiment fields for the implementation of various CA models for the assessment
of urban development policies. From the perspective of regional studies using CA
models, there are two notable application areas: Pearl River Delta (PRD) and
Northern China. The PRD is one of the economically dynamic regions and the
world’s famous manufacturing base. This region also suffers serious environmental
problems caused by fast urbanization, including the loss of farmland (Seto et
al. 2002, Li and Yeh 2004a), the degradation of mangrove forest (Liu et al. 2008a),
air pollution (Guo et al. 2006), etc. Researchers, such as Wu (1996) and Li and
Yeh (2000), brought in the CA models to address the issues of sustainable urban
development in PRD during late 1990s. These were also the first CA applications in
China. The region of Northern China spans from moist zone, semi-moist, semiarid
zone and arid zone with obvious climate transition and regional differences (He et
al. 2005). This region contains the agriculture-pasture transition zone, and the
environment and eco-system here are relatively vulnerable. Studies conducted by He
et al (2005), Li and He (2008), and Chen et al (2008) mainly focus on the
assessing the potential impacts of land use/cover change on the local eco-systems.

It can be seen from Table 1 that those widespread models in China are the family of
CA models based on multi-criteria evaluation (MCE-CA) (Wu and Webster 1998) or
artificial neural network (ANN-CA) (Li and Yeh 2002), and the SLEUTH model
(Clarke et al. 1997). This is related to the pros and cons when applying these models
to the specific simulation problem. The family of the MCE-CA models calculates
the development probability of a cell from the weighted sum or product of a group
of factors (Santé et al. 2010). Thus the main issue when using MCE-CA for urban
simulation is how to soundly define the weights of the factors. Usually this requires
the sophisticated domain knowledge or expertise in the field of urban studies.
Lately, researchers developed several approaches to automatically calibrate the
model, such as logistic regression (Wu 2002) and Monte-Carlo approach (Chen et al.
2002). More recently, techniques from artificial intelligence are introduced for the
calibration of CA models, including genetic algorithms (Li et al. 2008), support
vector machines (Yang et al. 2008), swarm intelligence (Liu et al. 2008c, Feng et al.
2011), artificial immune systems (Liu et al. 2010), etc. For a long time, urban
simulation using these models has been simplified into the simulation of, for a
particular land use type (e.g., built-up area), “changed or not” (developed or
undeveloped). This is caused by the difficulty in handling the complex
interactions among various land use types. Such problem can be solved by using the
ANN-CA. The non-linearity of ANN makes it possible in dealing with the complex
relationships of land use conversion. Thus the ANN-CA can fit well the objective of
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simulating the change of multiple land use types in a large area, such as northern
China (Li and He 2008).

Table 1 Selected studies on using CA for urban simulation in China

Article Model Study area Validation method
Kuang ANN-CA Beijing, Kappa index and PCM
(2011) Tianjin and

Tangshan
Chen et al MCE-CA Beijing Cell-by-Cell comparison
(2002) (Mont-Carlo
calibration)
Long et al Logistic-CA Beijing Cell-by-Cell comparison
(2009)
Yang et al ANN-CA Beijing N/A
(2011)
He et al SD-MCE-CA Beijing Kappa index
(2006) (Mont-Carlo
calibration)

Wang et al MCE-CA Beijing N/A
(2006)

Pan et al CLUE-S Beijing Kappa index
(2010)

Liand Yeh ANN-CA Dongguan Cell-by-Cell comparison
(2001)

Liand Yeh Grey-cell CA Dongguan N/A
(2000)

Liand Yeh Decision-Tree CA Dongguan Cell-by-Cell comparison
(2004b)

Huang and MCE-CA (GA Dongguan Cell-by-Cell comparison

Gao (2011) calibration)

Wu et al ANN-CA Dongying Fuzzy Kappa index
(2010)
Liet al GA-CA Guangzhou Cell-by-Cell comparison
(2008) and Dongguan
Liu et al ACO-CA Guangzhou Cell-by-Cell comparison
(2008¢) and Kappa index
‘Wu (1996) Fuzzy-CA Guangzhou N/A
Wu (2002) Logistic-CA Guangzhou Cell-by-Cell comparison
and Moran [
Liu et al Kernel-based CA Guangzhou Cell-by-Cell comparison
(2008b) and Kappa index
‘Wu and MCE-CA Guangzhou Cell-by-Cell comparison
Webster
(1998)
Gong et al Logistic-CA Guangzhou Cell-by-Cell comparison
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Table 1 (cont) Selected studies on using CA for urban simulation in China

Article Model Study area Validation method
(2009)
Liu and SLEUTH Hangzhou Lee-Sallee statistic
Liu (2009)
Ke (2006) N/A Jiangning N/A
(Nanjing)
Xu et al SLEUTH Lanzhou N/A
(2006)
He et al sD-CA Northern Cell-by-Cell comparison
(2005) China and Kappa index
Liand He SD-ANN-CA Northern Cell-by-Cell comparison
(2008) China and Kappa index
Chen et al 1CLUE Northern Cell-by-Cell comparison
(2008) China
Liand Liu CBR-CA Pearl River Cell-by-Cell comparison
(2006) Delta and Kappa index
Liu et al ATS-CA Pearl River Cell-by-Cell comparison
(2010) Delta
Fan et al Markov-CA Pearl River N/A
(2008) Delta
Fu et al MCE-CA Qingdao N/A
(2010)
Wang et al Markov-CA Rizhao N/A
(2009)
Huang et al MCE-CA Shanghai Cell-by-Cell comparison
(2008)
Han et al sSD-CA Shanghai Kappa index
(2009)
Feng et al PSO-CA Shanghai Cell-by-Cell comparison
(2011) and Kappa index
Zhang et al MCE-AHP-CA Shanghai Assessment of quantity and
(2011) location disagreement
Xietal SLEUTH Shenyang and Kappa index
(2010) Fushun
Wu et al SLEUTH Shenyang ROC curves,
(2009) multiple-resolution error
budget and landscape
metrics
Yang et al SVM-CA Shenzhen Cell-by-Cell comparison
(2008) and Kappa index
Sui and MCE-CA Shenzhen Cell-by-Cell comparison
Zeng
(2001)
Wang and RBFN-based CA Shenzhen Figure of mernit
Li (2010)
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Table 1 (cont) Selected studies on using CA for urban simulation in China

| Article Model Study area Validation method
Xie et al ABM-CA Suzhou Cell-by-Cell comparison
(2007)
Cheng and MCE-CA Wuhan Visual comparison
Masser
(2002)
Cheng and MCE-CA Wuhan N/A
Masser
(2003)
Li et al Population Xi'an N/A
(2003) diffusion model
Liu et al ANN-CA Xiangtan N/A
(2011)

The weakness of this model is its lack of the explanatory power about the
geographical process. This is due to the black-box essence of ANN. Compared with
the ANN-CA, the SLEUTH model differentiates the growth types into spontaneous
growth, new spreading center growth, edge growth and road-influenced growth.
Thus the SLEUTH model can help users better understand the urbanization process
of the study area. However, because the calibration method is a brute-force method,
the time-consuming calibration procedure becomes the major drawback of
SLEUTH. Therefore, it can be extremely difficult to apply the SLEUTH in large
area with fine resolution data.

In most of the studies shown in Table 1, CA models were used to simulate real
urban forms based on the replication of the historical growth process. The success in
replicating historical urban growth indicates that the model is able to capture the
regularity of the evolution of urban forms. Thereafter the model is used to predict
the potential future form by means of scenario simulations. These applications have
demonstrated the power of CA models for produce realistic urban forms as a means
to find solutions for practical problems. For example, He et al (2006) incorporated
system dynamics (SD) with CA to simulate the urban expansion of Beijing during
1994-2001, and predict the development patterns under different policies with
respect to the limitation of water resources and environmental deterioration. In
addition to the simulation of real urban forms, CA models were also popular in
studies on exploring explore and validate hypothetical ideas related to urban
dynamics (Santé et al. 2010). The very first example is Wu (1996), in which the
author integrated fuzzy set theory and CA to model sustainable urban development.
Li and Yeh (2000) used the constrained CA model to assess the benefits of compact
development in fast growing city. Recent studies also reveal the utilization of
artificial intelligence to produce the hypothetical urban forms, such as genetic
algorithms (Li et al. 2008) and artificial immune systems (Liu et al. 2010).
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3. Conclusion

China has come to a new era of rapid urbanization and urban expansion. Since the
late 1990s, many studies on using cellular automata techniques have been carried
out to tackle urban and regional development problems. Cellular automata (CA)
have been used as a useful tool to support land use planning and policy analysis as
well as to explore scenarios for future development in this fast developing country.
There is a growing demand for the application of CA in some planning departments
in major Chinese cities. Especially, many applications are found in the coastal cities,
such as Guangzhou, Dongguan, Shenzhen, Shanghai and Beijing in China.
Significant modifications have been made so that CA can be suited to a lot of urban
simulation and planning tasks in this region. Much effort has been made to
generate a high degree of reality in urban simulation by using a richer set of GIS
data for the calibration. Some classical CA models have been established by Chinese
scholars who have used a variety of intelligent methods, such as MCE, ANN,
and GA methods, for calibrating these models (Wu 1998, 2002, Li 2000, 2002,
2011).
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Abstract

Cellular automata (CA) have been widely used to simulate and analyze urban
growth processes due to their simplicity and capability of representing emergent
complex dynamics. Nevertheless, CA have not been used too much outside the
research realm, due to the lack of flexibility of implemented models or the
difficulties for their calibration and validation.

In the present article, the model of White and Engelen is used as a basis, because it
is one of the most flexible and widely used in the bibliography, so as to produce a
model inspired in it which will offer fewer difficulties by the time of calibrating it.
This will be achieved reducing the coefficients to be calibrated so as to be able to
automate this task using a genetic algorithm (GA). The obtained model will be
tested, simulating urban growth in the municipality of Ribadeo (NW Spain) and
analyzing the results.

Introduction

Cellular Automata (CA) stand out among the most used urban models, due to their
capability of reproducing complex dynamics, similar to those found in real cities,
from simple rules. There are several examples of the application of urban CA to the
simulation of the expansion of big cities [1, 2, 3, 4, 5].

In most of the cases, models were not used outside the scientific community due to,
among other factors, the lack of flexibility to accurately simulate different urban
dynamics and the lack of validation and calibration methods to make them more
user-friendly and ensure accurate simulations [6].

In recent years new calibration techniques are being applied. Mainly heuristic
optimization techniques such as simulated annealing and genetic algorithms (GA),
which constitute two of the most robust heuristic techniques. GA have been widely
used for CA calibration [7, 8, 9, 10, 11,12].

In this paper, a simplification of the calibration process of an urban CA is proposed,
using logistic regressions and a GA to improve its flexibility. Most of the existing
models were applied in large cities where urban growth is fast and abundant, thus
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there is a lot of information that can be used to identify urban dynamics. However,
in urban areas with slow and scarce growth, these dynamics are more difficult to
identify [13]. This is the case of Ribadeo, a small municipality in NW Spain [14].
Testing the model in such an area with so different characteristics, will allow to
better assess its flexibility. The paper starts describing the structure of the model,
which is based on the model of White et al. [1]. Then, the calibration process is
explained, where two novelties are introduced; the reduction of the number of
calibration parameters by using logistic regressions, a representation of the distance
decay influence of neighbouring land uses in the central cell using two linear
functions and a GA for the calibration of the remaining parameters. Finally, the
results of the simulation of urban growth in Ribadeo are analyzed and a series of
conclusions are drawn.

1. Urban CA model

One of the first widespread empirical applications of urban CA models was
developed by White el at. [1]. This model keeps the essence of formal CA rules and
hence their simplicity. Furthermore, it simulates several land use dynamics and uses
an extended circular neighborhood that accounts for the distance decay influence of
several land uses on the central cell state. These characteristics allow a great
flexibility by the time of simulating different types of dynamics [6].

This model considers two types of land uses: fixed, which influence the dynamics of
other land uses but do not participate in simulated dynamics, and active, which both
influence the dynamics of other uses and participate in the simulated dynamics and
thus are affected by growth rates. The transition rule of the model is based on
equation 1, which provides the transition potential of each cell from land use h to
each active land use j (Py):

P, =vs;(1+N; )+ H, o
where s; is the cell suitability for land use j, N; is the neighborhood effect and H; is
an inertia parameter that models the resistance of land use h to change to land use j.

v is a stochastic variable which introduces randomness in the model and is
determined by equation 2:

v=1+[-In(rand)}"

where rand is a random number between 0 and 1 and a is a coefficient that controls
the degree of randomness introduced in the model. The effect of the neighborhood
(Nj) is calculated with equation 3:

Nj :szkjdlid
d i

®)
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where lig is 1 if cell i at distance d is occupied by land-use k and is 0 if it is not. In
White et al. [1] a circular neighborhood with a radius of 6 cells is used, where the
influence of each cell is modeled by means of a coefficient m, which value
depends on land-use k in cell i and on the distance d of cell i to the central cell. Cells
transition in each interaction of the model to the land use for which they show a
higher transition potential until the growth rate for that land use is reached. In the
model proposed in this paper, the random variable is scaled using an exponential
curve (equation 4) which allows controlling better the degree of randomness
introduced in the model [15]. The random parameter in the equation is generated
using the algorithm of VB.

v=exp (—ax(l-rand)) @
Besides, in order to model the relative importance of suitability s; with respect to
neighborhood, this value is scaled with the coefficient . This way the suitability
factor is scaled in a similar way to that of the stochastic variable with the «
coefficient of equation 2.

Finally, a series of restrictions (R;) are considered that take the value 0 or 1
depending on whether the cell can be developed or not because of some kind of
constraint. Once the aforementioned modifications are made, equation 1 remains as
follows (equation 5):

2. Model calibration

The calibration of the proposed model is complex because of the high number of
calibration parameters. The model of White is usually calibrated by trial and error or
by expert knowledge [1, 3, 4, 16, 17]. Trial and error is very time-consuming [18]
and both methods do not assure accurate results since they may introduce a lot of
subjectivity [19]. These shortcomings are overcome by reducing the number of
calibration parameters so as to be able to automate the calibration process using a
GA.

2.1 Parameter calculation using statistical methods.

The suitability factor (s;) was calculated by using a logistic regression, therefore it
will be avoided to calibrate as many parameters as the number of variables
considered to calculate the suitability. This method has already been used to
calibrate an urban CA model in [20].

Another way of reducing the number of parameters is simplifying the calculation of
the neighborhood effect. This can be done by using a function of the distance to
calculate the influence of the neighbouring land uses on the transition potential of
the central cell. This function could have several shapes [21], which can be
simplified by using two linear functions (Figure 1):

fx)=a+bx  (6)
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f(x) = ¢ + dx (7)

where x is the distance to the central cell and a, b, ¢ and d are the coefficients of the
linear function.

Therefore, it is not necessary to calibrate one my;4 coefficient for each land use k and
equidistant cell to the central cell (for a circular neighborhood with a radius of 3
cells 7 coefficients my;q would have to be calibrated for each couple of land uses, as
shown in figure 2), since the four parameters that define the two lines (a, b, ¢ and d)
are enough to model the distance decay effect.

Figure 1: Examples of simplification of distance decay functions by using two linear functions.

6
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6

Figure 2: Cells numbered considering their equidistance to the central cell in a 3 cell radius
neighborhood.

2.2. Genetic Algorithm

In spite of having considerably reduced the number of calibration parameters (from
213 to 138), they are still quite a few; therefore the calibration process remains
difficult. This is the reason why a GA [22] is used to accomplish this task.
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This calibration method is inspired on the genetic evolution of populations and is
composed of the following phases: (i) initialization, where an initial population of
possible solutions is randomly generated, (ii) evaluation, where the goodness of the
solution provided by each individual is calculated using a fitness function, (iii)
selection, where the best individuals are selected according to their fitness, (iv)
cross-breeding, where selected individuals are cross breeded to create the following
population of solutions, and (v) mutation, where random variations are introduced in
the values of the obtained population of solutions.

In our case, a first population of 700 possible solutions was randomly generated, so
as to have a number of individuals higher than the number of allele and not too high
so0 as to make the algorithm too computationally intensive. This way it is ensured that
the initial populatin is diverse enough and the computation time is not too long.The
simulations corresponding to those 700 possible solutions were evaluated to select
the parents using the tournament method. In the tournament process all individuals
where randomly chosen two by two and compared. The best ones in each
comparison were selected to cross-breed. Every couple of chosen individuals
generated two sons. In the cross-breeding process two recombination points were
randomly set, where the information of each parent was interchanged to generate
each son. The best individual in each population is selected to survive in the
following generation. A mutation rate of 0.008% is applied to all individuals of the
population of descendant, except for the surviving one. The mutation rate was
determined by trial and error considering that it would produce variability enough so
that the algorithm would not get stuck in a local optimum. This was checked
comparing the mean and maximum values of the fitness function for each
generation, if the maximum value did not vary the mean should compensate this
stability producing strong variations of its value in each iteration.

By the time of selecting a fitness function, it was considered that indexes that
evaluate cell by cell coincidence do not account for the coincidence of the patterns.
That is why the index proposed in [23] in combination with three spatial metrics
[24] - the number of patches (NP), the area weighted mean patch area (AREA_AM)
and the edge density (ED) — were used. The index proposed in [23] not only
accounts for cell by cell coincidence but also measures whether cells were located
close to their real position or not, giving thus a better assessment of the accuracy of
the model than the kappa index.

The index described in [23] is calculated running all over the real R and simulated
maps S windows with several resolutions g (1 cell side, 2, 3, 4, ..., n cells side). In
each window, the number of cells n occupied by each land-use j in the real Rn,j and
simulated maps Sn,j is calculated. The lowest value for each map and land use is
chosen and all the values for all land-uses are added. Then each window is weighted
by the number of cells that the window covers, Wn, all the values from all windows
in which the maps are divided at each resolution are added g(Ng) and the resulting
value is divided by the number of cells of the map.

Equation 8 is used to calculate indexes for each window resolution Pg. Equation 9 is
used to calculate a global index for all the window resolutions. In equation 9, b
scales the relative importance of each resolution in the final index, in our case b was
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given a value of 1.2. P will have the value 1 if there is a perfect match and O if the
cells do not match at all.

Ng

[Wni MIN(Rn, j, Sn, j)} 8)

Ng

> wn

n=1

iexp >0 Pg )
e

G

zexp bxg

9
Only active land uses were considered in the fitness function. The values of the
spatial metrics for the simulated map where subtracted to the values for the real map.
The absolute values of these subtractions and the value of P (eg. 9) were used in the
fitness function. So that these values varied within the same range, the maximum
and minimum values for each index in each interaction of the AG were taken and
used to normalize the indexes (eq. 10). Finally, the normalized values where used in
equation 11 to calculate the fitness function (F). F was used to evaluate the
individuals of each generation, thus the higher the value, the better the individual
will be.

n=1

Pg =

p=

Value —min value (10)
max value — min value

Normalized value =

normalized NP + normalized AREA _ AM + normalized ED *

3

+ Normalized P

2 (11)

3. Case study

The study area is located in the municipality of Ribadeo (NW Spain) (map 1).
Ribadeo is located at a crossroad of important routes connecting the regions of
Asturias and Galicia and concentrates the commercial activities and services of the
surrounding areas. Ribadeo has 6000 inhabitants and experienced a growth of 1000
inhabitants in the last 10 years. The study area is formed by the main urban core of
Ribadeo and its 4 surrounding parishes (sub-municipal administrative division in the
region of Galicia), towards which the urban core is expanding.
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Map 1: Location of the study area and land use map of 2007.

The data for the model calibration were obtained by fotointerpetation of aerial
images of 1978, 1995 and 2007. A cadastral map of 1995 and a digital terrain model
obtained from the Spanish national topographic map were also used. All this
information was converted to raster format of 35 x 35 m resolution, and processed to
obtain the maps of the input variables.

Land uses where classified as in the model of White et al. [1]:

=  Fixed land uses; water surfaces, roads, institutional, parks, rail tracks.

= Active land uses; commercial, industrial and residential.

Agriculture and forest land uses where considered as fixed land uses, yet they could
be transformed to urban land-uses.

First, the suitability maps (sj) were calculated using the logistic regression technique
described in section 2.1 (Map 2).
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The model was calibrated using the land use maps of 1978 and 1995. The AG was
run until the best fitness value did not increase during several interactions (this
happened from interaction 52 on, when the fitness function increased from an initial
value of 3.95x10% to a value of 4.47x107). The coefficients obtained in the
calibration (table 2) where used to simulate urban growth between 1995 and 2007.
Results were validated comparing them with the land use map of the year 2007. The
amount of growth of each active land use in each interaction was determined
dividing the real growth in the period to be simulated by the number of interactions
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Map 2: Suitability maps for the active land uses.
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Table 2 Coefficients obtained in the calibration with the GA

Industrial land-use Potential

Land-uses Neighborhood a b c d
Agriculture -15.73 -1.94 7442 -11.94
Water 1835 142 -82.68 7.03
Commercial 1527 0.06 276 -0.50
Roads -43.73 -1.07 96.80 0.97
Forest -19.81 2.11 55.90 0.78
Industrial -69.44 -0.15 1.19 -0.47
Institutional 89.94 -0.14 15.98 0.00
Parks 3418 0.34 -1499 -0.51
Residential -98.98 0.74 -85.63 -2.51
o 4.53
B 5.50
H 33837.97
Commercial land-use potential
Land-uses Neighborhood a b c d
Agriculture -1.05 0.61 3310 -5.96
Water -25.26 -0.57 -71.82 214
Commercial -69.79 -2.34 -18.75  0.07
Roads 41.08 -1.60 78.94 0.02
Forest 6.00 2.06 -99.54 -1.02
Industrial 8246 0.64 -11.04 0.11
Institutional -80.02 0.00 41.64 -125.34
Parks -30.96 196 -30.85 17.19
Residential 12.17 -0.49 90.18 -0.65
2.78
B 1.82
H 265816.4

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 21



Garcia et al., Calibration of an urban cellular automata model

Table 2 (cont) Coefficients obtained in the calibration with the GA

Residential land-use potential

Land-uses Neighborhood a b c d
Agriculture -458 -1.64 63.85 0.95
Water 89.51 2.64 32.25 -2.68
Commercial -39.35 -0.93 -0.55 0.86
Roads 48.06 0.21 -1297 1397
Forest -49.20 180 -6.74 0.20
Industrial 35.41 1.98 -97.94 0.11
Institutional 9293 -0.53 89.63 -1.23
Parks 86.09 -0.41 61.85 -5.28
Residential -67.89 -1.57 69.27 -4.70
5.93
B 3.44

H 113284.80

The results of the proposed model were compared with the results obtained using the
original model of White. The neighborhood parameters used in the model of White
where the same than those used in the application of this model to Cincinnati [1],
since according to the authors, these parameters should not vary too much between
different cities. The stochastic variable and the accessibility were calibrated by trial
and error and the suitability was calibrated using a logistic regression and the same
variables as in the proposed model.

The index proposed in [23] (table 4) show that cells simulated with the proposed
model were located closer to the real ones than those simulated with the model of
White.

Considering the figure of merit (table 4), the results are even better for the proposed
model. The figure of merit is calculated subtracting the partial hits (urban land uses
simulated as different urban land uses) to the hits and dividing the result between the
addition of the misses (urban land uses which are simulated as non urban land uses),
false alarms (non urban land uses which are simulated as urban land uses ), hits and
partial hits.

The values of the spatial metrics show that the residential land use simulated with
the proposed model presents patterns closer to reality (table 3). Commercial and
industrial land use patterns were not correctly simulated because the amount of
growth in the study period for these uses was low and there was not enough
information to calibrate them correctly. The values for the AREA_AM are better in
the patterns simulated with the model of White since - as it can be seen in map 2 -
this model simulated growth concentrated along the main roads whereas the
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proposed model simulated more disperse patters which are in general lines closer to
the real ones.
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Map 3: a) Map simulated with the proposed model for the year 2007 b) map simulated with the
model of white for the year 2007.

Table 3: Results of the evaluation metrics for the proposed and the White models

Proposed model NP AREA_ AM ED

Pontius index 0.9201  Residential 224 37.29 18.43
Industrial 43 1.84 2.79

Commercial 23 0.55 1.13

White et al (1997) NP  AREA AM ED

Pontius index 0.9195 Residential 234 19.52 20.46
Industrial 46 3.24 2.4

Commercial 29 1.35 1.06

Real data NP  AREA AM ED

Residential 224 18.73 18.25

Industrial 45 2.07 2.66

Commercial 13 1.76 0.84

Table 4 Figure of merit of the results of the proposed model and the model of white.

Figure of merit  Hits  Partial hits  Misses False alarms

Proposed model 7.09% 69 5 447 382
White et al (1997) 3.3% 68 36 417 436
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Conclusions

The model proposed by White et al. [1] has many advantages for the simulation of
small urban areas but its main drawback is the high number of calibration
parameters. The modifications proposed in this paper allowed to automate the
calibration process, making it simpler without losing the flexibility of the model of
White. This was achieved using logistic regressions to calculate the suitability and
simplifying the neighborhood coefficients by representing the distance decay effects
with two linear functions. The method used to scale the randomness degree was also
improved using an exponential function.

The obtained results show that GA are a good tool to calibrate CA models, since
better results are yielded than using expert knowledge or trial and error methods.
Most of the errors produced in the simulation of the study area are due to the
scarcity of data to calibrate the model, caused by the characteristics of the study area
which presents a low and slow growth. The mismatches between the real and
simulated data are also due to the deficiencies of the validation method, since, even
using several indexes that considered both the cell to cell match and the spatial
pattern of land uses the complexity of growth patterns could not be accurately
captured. Future research should focus on finding validation methods which can
better evaluate the complex aspects of urban dynamics.
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Abstract

The process for extending an existing model of residential migration of households
within an urban environment is presented. The model employs a hybrid framework
consisting of cellular automata to represent the urban landscape, and agent automata
to represent the households. The challenges of working with realistic temporal and
spatial features are addressed.

Introduction

For decades researchers have tried to determine the process through which a
household decides where to live [3][7]. Residential movement is the movement of
populations on a household scale. It impacts the composition of cities and the
character of neighborhoods. Recent advances in computing technology have allowed
researchers to start investigating social phenomena using software models which can
capture the complexity of social dynamics. Furthermore, researchers have extended
these modeling techniques which utilize simulation technology to explore the
processes of residential migration [6].

The Modelling of Complex Social Systems (MoCCSy) Urban Migration project is a
recent attempt to capture the residential movement problem in a computable form
[4]. This is an interdisciplinary project drawing on the expertise of researchers in
Computing Science, Criminology, Environmental Science, Geography and
Mathematics. This group worked in an iterative, three stage process with the
eventual goal of developing a model that correctly represents expert domain
knowledge, is mathematically sound, and can be examined through computational
means. These criteria correspond to the three stages of the process, illustrated in
Figure 1. This process is described in full in [2].

Previous stages of the project focused on the general phenomena of residential
movement and neighborhood formation [4]. As such, the environment included in
the model was abstract in nature. Here, we present our findings with regard to
extending that model to include geographical features based on real data. This paper
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begins by outlining the background of the subject matter and modeling process,
which is followed by a summary of the model design. The methods used to extend
the model by integrating real geographical data to generate the simulation
environment are described, and results from test runs on the simulation model are
presented. Finally, we discuss issues and challenges encountered during this process
and mention techniques used to deal with them.

Background

Computational modeling is an approach to research that utilizes software
representations of phenomena in order to analyse them in a novel manner. A model
is a parsimonious version of something in the real world, ostensibly facilitating
understanding by only including salient aspects of the subject matter. Models can
help to reduce uncertainty about the future, test “what if” scenarios, and have the
potential to reveal underlying structural characteristics and relationships. Models
also are a formal explanation of understanding, and serve to communicate ideas and
share in knowledge discovery [5].

Conceptual Mathematical Computational

Modeling Modeling Modeling

Figure 1: The iterative process for modeling complex phenomena. Adapted from [2].

The decision by a household to stay in their current location or move to a new one is
a complex process [12]. In reality, a household will consider myriad social and
material factors, weighing the benefits and disadvantages of each option. Access to
employment, commuting time, family size, income and personal relationships can all
affect the decision to migrate. Sources of stress in the current location may also
motivate a change of location [3]. This complexity makes modeling of residential
migration difficult to do with traditional linear models, whereas computational
modeling can address these issues [11]. Cellular automata (CA) have been used by
researchers in similar work because of their capacity for simulating local interactions
[9][10]. Likewise, agent automata have been shown to be useful for representing the
actions of agents in an urban environment [1]. Hybrid models that use both types of
automata have also been developed [8].
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Torrens (2007) developed a simulation model of residential mobility which
integrates numerous factors involved in this process [6]. Properties are differentiated
by tenure (rental versus purchase), size, and monthly cost, among other things.
Households have characteristics such as income, age, size and ethnicity. Local
housing markets and communities are also considered. A unique aspect of this
model is that it represents these entities as geographic automata — a paradigm that
includes the capabilities of both cellular and agent automata. One of the limitations
of this project is that the representation of space is abstract.

Existing Simulation Model

The research presented here extends the urban migration model developed through
the MoCCSy research group, which is described in full in [4] (including justification
of design choices and theoretical background). In the model, the environment is
represented by cellular automata. The individual cells represent residential locations,
and can contain one or more households. The households are represented by simple
agent automata. The most important characteristic of a household is its social
structure value. This value is used to capture all features that correspond to social
coherence. Thus, a variety of contributing factors, such as household income,
education, ethnicity, and so on, are compressed into a single representative variable.
This approach avoids the difficulty of operationalizing the individual factors and to
instead focus upon their cumulative effect on residence choice.

A positive social structure value indicates adherence to social norms and lawful
behavior, while negative values indicate an emphasis on personal freedom and lack
of community duty. Extreme negative values can also indicate criminal inclinations.
Our fundamental assumption is that households are attracted to neighborhoods with
a social structure value similar to their own when selecting a new residence. The
social structure of a cell is either the average social structure of all of its residents, in
the case of a high density cell (such as an apartment building), or the average of all
the cells in a 1-radius Moore neighborhood, in the case of a low density cell (such as
a single family home).

The decision of a household to look for a new home is probabilistic, with the actual
chance of this being dependent on the difference in value between its social structure
and that of the cell it inhabits. If a household does not move, it is subject to social
influence from its neighbors, its social structure slowly becoming more similar.
Finally, all households are subject to regular random perturbations of varying
intensity — this represents the individual factors in life that alter social structure, such
as employment, illness and family relations. Thus we consider this model to be a
hybrid CA-agent model, since local change (at the neighborhood level) is
propagated using cellular automata structures, while household units are represented
by agents with the ability to move.

Social attractors are another entity that may be present in a run of the simulation
model, depending on the scenario chosen. These are institutions that attract
households of similar value. A positive attractor, such as a church or school, attracts
households of positive social structure, while a negative attractor, such as a drinking
establishment, attracts households of negative social structure.
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Start

Update Time timeStayed := timeStayed + 1
1
Decision Making

if wantsToMove and canMove

@ if imeStayed > maxTime

false

Saocial Interaction

location := newLocation

v

timeStayed := 0

Personal Life social := social + influence

social := social + random

|

BoundSocial

Figure 2: Outline of household behavior. The part related to residence change is highlighted.

Data

The goal in this stage of the project is to implement a geographic environment that
matches the general residential features of a real environment. VVancouver is selected
due to its diverse neighborhoods and the availability of data from the City of
Vancouver’s Open Data Catalogue. A land use map was generated using the City of
Vancouver’s district zoning data (Map 1). Since the 75 different zoning
classifications are too cumbersome to work with, these are aggregated into 9 general
classes of zoning types. While the zoning data gives a general idea of where people
in the city live, it is not sufficient for generating an environment for the simulation.
Some parks are classified as residential area (including the spacious Stanley Park
located downtown), despite having no residences. Further, the Comprehensive
Development classification is used as a catch-all to mark areas that need special
regulation. Both the mixed commercial and condominium high-rises of Yaletown
and the luxurious homes of Shaughnessy fit into this classification, despite having
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radically different residential densities. Due to these problems, a map of dwelling
density is clearly necessary.

The residential density map (Map 2) is prepared by using the Dwellings Occupied by
Usual Residents data at the dissemination block level from the 2006 Census of
Canada. Dissemination blocks vary in size, so some larger blocks have a high
number of dwellings while being quite sparse. To adjust for this, the area of each
block is calculated using the ArcGIS Spatial Analyst extension. The total dwelling
count for each block is then divided by its size to generate a final density value of
dwellings per hectare. The resulting map shows Vancouver’s concentration of
residential density in the downtown core and relative sparseness throughout much of
the west side.

Legend

Zoning Districts

[ Comprehensive Development
Single Family Dwelling
Multiple Family Dwelling
Two Family Dwelling
Limited Agricultural
Commercial

Il Historic Area .

[ Light Industrial .|

I /ndustrial .

W%E .
Meters
0 1,550 3,100 6,200

Map 1: Vancouver zoning districts, 2009. Source: City of Vancouver, Open Data Catalogue.

The residential density map (Map 2) is prepared by using the Dwellings Occupied by
Usual Residents data at the dissemination block level from the 2006 Census of
Canada. Dissemination blocks vary in size, so some larger blocks have a high
number of dwellings while being quite sparse. To adjust for this, the area of each
block is calculated using the ArcGIS Spatial Analyst extension. The total dwelling
count for each block is then divided by its size to generate a final density value of
dwellings per hectare. The resulting map shows Vancouver’s concentration of
residential density in the downtown core and relative sparseness throughout much of
the west side.

Each of these maps is rasterized and then saved as a text file. The program can then
import the values from a matching set of zoning and density text files to construct an
urban environment with cell values that match the raster grid. Files with cell sizes of
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25, 50 and 100 square meters are prepared in order to test the model at different
levels of spatial resolution.

Extensions to Simulation Model

The addition of an environment modeled after the real world required changes in
other parts of the simulation model. Many of these changes are purely graphical,
such as adding functionality to display the zoning district types on the map. Another
change is to show dwelling density values using a logarithmic scale, in a similar way
to how density levels are classified in Map 2. Other changes are of a structural
nature.

Legend

Dwellings per Hectare
N 0.0-0.1
mo1-19
[ 119-60
[ 160-141
[ 141 - 265
Il 265 - 604

Map 2: Dwellings occupied by usual residents, Vancouver, 2006. Source: Census of Canada.

In particular, the effect of the land use types on household behavior needs to be
determined. Since the zoning districts show the land use of a cell, they can be used
to determine how much the effect the actions and behavior of the residents have on
the social structure of the neighborhood. An example of this is in a primarily
commercial area where there are many residences above places of business, but the
character of the neighborhood is determined more by the businesses than by the
residents. The mirror situation is a neighborhood composed primarily of resident
homeowners: the behavior of the residents is the main source of neighborhood social
structure. In the original model, low density cells used a radius one Moore
neighborhood to calculate social structure, while high density cells did not consider
any neighboring cells for this calculation. These ideas were composed to come up
with a neighborhood factor variable, determined by the zoning district type.
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The neighborhood factor determines the weighting of neighboring cells in
determining the cell social structure. It is noted as F, such that F; is the
neighborhood factor for the cell at grid location (i, j). A radius one Moore
neighborhood is still used, so the number of neighborhood cells on a square grid is
8. Given that S;(t) is the average social structure of all residents at cell (i, j) at time
step t, and with 8 neighboring cells (i, j’), the social structure of cell (i, j) at time
step t is denoted as Vjj(t) such that:

S;(t)+F; x> S,(t)
1+F; =8

Vij (t) =
(€]

Note that for the case F;; = 0, Vjj(t) = Sj(t). This is identical to the previous version,
where high density cells ignore neighboring cells when determining cell social
structure. Likewise, for Fj; = 1, Vj(t) is an average of the Sj(t) for all of the cells in
the 3 x 3 neighborhood. Thus the options of the original version are still present, but
intermediate levels of neighborhood interaction are now possible. One difference
from the previous version is that the neighborhood factor is determined only by
zoning type, and not the actual density of a cell. While we can expect a high
correspondence between density and zoning district type, this model allows for some
variance in behavior. For example, it is now possible to model high levels of
interaction in a densely populated neighborhood that is primarily residential, as
might be seen in the eastern half of Vancouver.

Table 1: Neighborhood factor by zoning district type

Zoning District Type Neighborhood Factor
Single Family Dwelling 1.0
Limited Agriculture 1.0
Two Family Dwelling 0.7
Multiple Family Dwelling 0.3
Comprehensive Development 0.0
Commercial 0.0
Industrial 0.0
Light Industrial 0.0
Historical 0.0

The original model was typically run on a 50 x 100 grid of cells that contained a
total of 9500 households on average. The capacity of the City of VVancouver from the
data generated is 253,680 dwellings. Running the simulation model with this
massive increase in households resulted in the program grinding to a near standstill.
Upon analysis, the part of household behavior that demanded the most processor
resources was related to residence change: the decision to move and the process of
finding a new home location. The solution to this problem is to change the temporal
scale of the model. Previously, time steps corresponded to one month, that being the
shortest duration conceivable between typical residence changes. With a time step of
that length, all households needed an opportunity to evaluate their satisfaction with
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their current location and decide whether or not to move. By changing the duration
of a time step to a single day, it became acceptable to only give a small proportion of
the total household population the opportunity to consider movement. Social
structure changes due to social interaction and personal factors could still occur on a
daily basis. This change in scale enabled the program to run at a reasonable speed.
However, some adjustments to the model would be required. The implications of
changing the temporal scale are discussed in the next section.

Results

With the change in temporal scale, fewer households are given the opportunity to
move during each time step. Since the cells are subject to influence from their
neighbors in the steps that they do not change location, it seemed likely that the new
model would be sensitive to changes in the social influence factor variable. This
variable determines the magnitude of change in social threshold of a household
being influenced by its neighbors. In order to test this, the simulation was run for 50
steps using a range of values for the social influence factor, and the standard
deviation of the social threshold values of the households was recorded at both the
beginning and end of a run. Table Il lists the average standard deviations for five
runs of each value chosen for the social influence factor. No standard deviation
score for any run varied more than 1% from the average.

Table 2: Sensitivity to Social Influence factor

Social Influence Initial Social Threshold Final Social Threshold
Factor Standard Deviation Standard Deviation
0.1 2.020462 0.4595

0.01 2.021267 1.857773

0.001 2.020333 2.111683

0.0001 2.021514 2.139422

Not surprisingly, the initial standard deviations are almost identical, since they are
dependent only upon initialization of the households, prior to any opportunity for
social influence. The final standard deviations show the impact of the social
influence factor: large values result in small amounts of variance in social threshold.
In other words, when the magnitude of social influence is high, the social structure
values of the households move closer to each other. This takes place through local
interactions, but occurs throughout the system. This results in an averaging effect
that causes social threshold values to approach zero over time.

Figures 3 and 4 illustrate the effect of the social influence factor. The non-residential
areas are colored black; this includes parks and industrial areas. The remaining areas
are residential, colored in a grayscale continuum to denote social structure, where
white is positive and black is negative. Gray coloring shows areas where social
structure equals or is close to zero, and these clearly dominate in Figure 3, a high
social influence factor scenario. In Figure 4, there is more variation in social
structure values, as shown by speckling cell coloring in the residential areas.
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Figure 3: The simulation run with social influence factor set at 0.1.
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Figure 4: The simulation run with social influence factor set at 0.001.
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Discussion

One issue that turned out to be very important when bringing real data into a
simulation model is scale. The effect of changing the temporal scale has already
been discussed, but the choice of spatial scale was also critical. Although it was
relatively easy to prepare the data at a variety of resolutions, actually getting each of
those data sets to run was more of a challenge. Table 111 summarizes the time it took
the program to initialize the model entities (cells and agents) and also the time to run
the simulation for 50 time steps. This was done for each resolution available, and
also performed both with and without attractors present in the environment. A dual
core 2.0 Ghz AMD CPU system with 2 gigabytes of memory and running Windows
7 was used to test the program.

Table 3: Program Execution Time

Cell Size Initialization Time (seconds)  Run Time (seconds)

(m?) No Attractors  Attractors No Attractors  Attractors
100 0.45 18.03 10.83 11.44

50 15 333.01 165.25 170.62
25 —— insufficient memory

In the case of the highest resolution, 25 m? cells, the program was unable to run at
all due to insufficient memory. With the cells at 50 m? in size, the program was able
to run successfully, but the times are an order of magnitude slower than at the lowest
resolution (100 m?). Initially, households searching for a new location would
compare each potential location with all of the appropriate attractors in the entire
environment. This resulted in the run time for scenarios with attractors taking
roughly twice as much time as they currently do. However, since attractors do not
move in the model, a preprocessing stage was added in which the relative locations
of attractors to each cell are calculated. This has dramatically reduced the run time
for scenarios with attractors in them, in exchange for a longer initialization time.
This trade-off is particularly worth it for long runs of a thousand time steps or more.
Eliminating redundant work and improving efficiency can often be ignored in
research software development when working on abstract models due to the
processing power of modern CPUs. Using large data sets from real sources changes
this: it is possible for the CPU, memory or both to be insufficient to run the program
at a satisfying pace.

This version of the program did not include a legend explaining the meaning of the
colors shown in the display. This was an oversight due to the simplicity of the base
model, where screen elements could be easily explained verbally. However the
added complexity of the extended model makes verbal explanation inefficient and is
intimidating for people new to the program. Of course, having a legend is one of the
cornerstones of cartography, being a key by which the information contained in a
map can be interpreted by a reader. By extending the project to make it clearly
geographical in nature, the importance of a legend was made apparent. A legend
implemented in software can be very flexible, adjusting its contents dynamically to
the factors currently on display and their associated levels.
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However, there is also a more fundamental issue at work here: research is only
valuable if it can be communicated to others. This is even truer of research that is
intended to be used by others in the manner of a tool, like with a software model. It
is easy when working on a program by oneself to forget about all of this, since the
intimacy engendered by the familiarity of the inner workings of the system allows
immediate comprehension of the program’s behavior. Research software must
prioritize explanation and communication in order to reach out to colleagues and
peers.

Conclusion

While still in its early stages, this project illustrates several considerations that can
arise when enabling a simulation model to utilize real data. For applications that
involve geography, determining the appropriate temporal and spatial scales is of
particular importance. A successful strategy employed here is that of simplifying the
problem first, either by using coarse data or reducing the number of operations,
before attempting to adjust the model in terms of behavior or efficiency. The
advantage of this strategy is that a working model can be achieved more quickly,
which can in turn be used to facilitate further improvements.
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Abstract

Using standard and third-party libraries of Python, we generate a cellular automaton
with geospatial information to study spatial externalities. Cells correspond to
polygon geometries to define the shape, size, and neighborhood configuration, and
the transitional rule consists of a simple spatial autoregressive model. To illustrate
the construction and performance of this model, we use data of the Mexico City
Metropolitan Area for studying production spillovers. The results suggest a simple
method of building a cellular automaton using Python’s libraries that process
efficiently geospatial data and produce effective spatial simulations for the social
sciences.

Introduction

The increasing capability to collect, compute, and visualize geographic
information is one of the most challenging and novel tasks for fields related to
spatial analysis. Although the existence and development of the Geographic
Information Systems (GIS) and computational platforms, the integration of
cellular automata (CA) to the GIS technology is not trivial [1, 2, 3, 4, 5]. In
particular, a dynamic programming language applied to social sciences is required
to process, analyze, and develop geospatial information.

Python  (http://www.python.org/) represents one of the best-developed
programming languages used for a variety of GIS domains. Its relevance consists
in versatile applications that combine standard and third-party libraries covering
and supporting many programming needs, for example to write simple functions
or to design complex modules.

The purpose of this work is to show the application of such libraries for
generating a CA that uses geospatial information, specifically vector geometries, to
define the shape, size, and neighborhood configuration of cells, and that applies a
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simple spatial autoregressive model (SAR) as a transitional rule to analyze the
effect of spatial externalities in urban areas.

We exemplify the construction and performance of such CA with data of the
Mexico City Metropolitan Area (MCMA) to explore production spillovers. The
data is based on a vector layer that contains polygon geometries related to
census tracts (CT). Each of them includes industrial census data in the year of
2004.

The rest of the document consists of four sections. The second section presents
a summary of computer developments, including Python libraries, for spatial
simulations. The third section explains the construction of the CA. The fourth
section illustrates the usage of it, analyzing spatial externalities in the MCMA.
Finally, we conclude with a section of closing remarks.

Computer Developments for Spatial Simulations

Nowadays, computer developments related to geospatial information are based on the
GIS technology in which simulation platforms have integrated it into their
environment for analyzing complex spatial phenomena.

Some of the most important simulation platforms with such a characteristic are Swarm,
NetLogo, Cormas, and Repast. They use geospatial vector data (points, lines, and
polygons) to provide a more realistic representation of the spatial organization, but in
practice they are limited to geoprocessing, manipulation, and store methods [6]. From
the point of view of the modeler, although these platforms offer a simple and
powerful programming language, a graphical interface, and a comprehensive
documentation, they exhibit higher costs of learning [6, 7, 8].

Dealing with such restrictions, we use Python as our computing framework that not
only presents a collection of features covered and supported much programming needs
and showed a very simple and consistent syntax, but also provides a wide range of
libraries making possible to process and develop geospatial data for social simulations
[9, 10, 11, 12]. Such libraries are OGR (http://www.gdal.org/ogr/) to manipulate
geospatial vector information, NumPy (http://numpy.scipy.org/) to handle computation
of large and multidimensional numeric data, Matplotlib
(http://matplotlib.sourceforge.net/) to compute and plot 2D data, and Pygame
(http://pygame.org/) to create video games. These and other libraries, for example
PySAL (http://pysal.org/) and Rpy (http://rpy.sourceforge.net/), have increased in the
last years, showing an important growth in the programming contributions compared
to other languages. Some benefits of these libraries are to process efficiently
geospatial information and develop methods for advance spatial operations, for
example storing environment results and speeding up the simulation performance.

Geospatial Cellular Automata

The first component for modeling a CA with geospatial information is the
neighborhood configuration that represents different levels of connectivity, contiguity,
and distance between localized objects [13, 14, 15]. Following the work of Moreno
et al. [5, 16] who proposed a model called vector-base geographic cellular automaton
(VecGCA), we define a CA with such a neighborhood as geospatial cellular automata
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(GCA). Two differences exist between Moreno’s et al. and our model: the name and
application. We are interested in simplifying the model identification and
generalizing the applicability for social simulations.

The second component ofthe GCA, which differentiates the social science application
from others, is the transitional rule. In this case, we use a SAR process for studying
the neighboring effects of productivity.

The following subsections present the construction of the GCA by showing the
application of Python’s libraries for generating the neighborhood configuration and by
explaining the derivation of the transitional rule from the unconstrained spatial
Durbin model.

Neighborhood configuration

Based on the object-oriented paradigm, we mix the OGR, NumPy, Matplotlib, and
Pygame libraries to show the construction of a set of functions and a class object
that produces a GCA (Figure 1).

‘ Functions ‘ Class

L
I
Spatial simulation

Figure 1: Integration of libraries

Functions manipulate geospatial data in order to extract, save, and retrieve the geometry
of each vector layer feature, using a binary format. The class object defines each cell and
visualizes it in a surface object. After building the spatial configuration, we define the
transitional rule to perform the spatial simulation.

The set of functions processes geospatial information by using the OGR library.

Modules of such library help us to create functions related to read, save, and retrieve
data (Figure 2).

Functions
e
PR
I Re'ad \ [ Sa've ‘ Retrieve

]
Dictionary

Keys = id code -‘ Binary file

Values = geometry

Figure 2: Basic functions

The first function reads the geometry of each feature and returns a dictionary (associative
array) indexed by keys (id codes) and values (geometries). This dictionary is an efficient
Python object to store and extract geospatial data, and it depends on the size of
information. Then, using the NumPy library and the created dictionary, we save and
retrieve information as a binary format.! In sum, these functions help to collect
fundamental geospatial data for generating the structure of the GCA.
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Next, using the Python’s class object, we create the neighborhood structure of the
GCA. Each cell corresponds to specific feature in the vector layer, showing unique
location, shape, size, and neighborhood configuration. Two types of information define
this class: attributes and methods (Figure 3).

Attributes characterizes the object, for example the id code of the feature, and methods
modifies, computes, or extracts such attributes using functions, for example returning
the id code of the first feature of the layer. Three basic attributes define a cell in
the model: id code, geometry, and neighbors. On the other hand, the essential
method is a function that draws the geometry of a cell in a surface object. Applying
the instantiation operation, which creates a new instance of the class, we assign a cell
to every feature in the vector layer. Finally, cells are collected in a list object,

container of items.

Attributes Methods

id code
geometry drawGeometry()
neighbors

Figure 3: Python class object

To conclude the construction of the GCA, we use the Pygame library for displaying
the geometry of cells into an alternative GIS environment, a window in the desktop.
We use the list object of cells and the drawGeometry() function to reproduce the
geospatial information of the original vector data. In addition, the Matplotlib library
is applied for generating simple statistical measures and graph visualizations.

Transitional rule

The transitional rule is related to the analysis of spatial externalities. Economists and
geographers have studied them for many years, where the former have contributed
importantly in the theoretical and empirical analysis of them [8], and the latter have
proposed significant cellular automata models as a tool for analyzing spatial dynamics
[17, 18]. In this case, the unconstrained form of the spatial Durbin model applied in
spatial econometrics provides the general framework to define a transitional rule [19,
20]. The unconstrained model in matrix notation is specified as follows:

y=AWy +XB+WXy+u (1)

where y is n by 1 vector of a dependent variable, 1 is the spatial autoregressive
coefficient, Wy is the spatially lagged dependent variable, X is a set of explanatory
variables, WX is a set of spatially lagged exogenous variables, y is the coefficient
associated to WX, and u is a vector of error terms [20].

Based on equation (1), we define the transitional rule as the following SAR model:

y=AWy+u @)

Equation (2) suggests a diffusion process depended on the scale effect in the
neighborhood of each cell and randomness.
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Production Spillovers in the Mexico City Metropolitan Area

In this section, we illustrate the application of the proposed GCA, presenting the case
of the MCMA to analyze the spatial diffusion of productivity. The geospatial
information of the area corresponds to a set of CTs (5004 polygons), which the
Mexican Statistics Office (INEGI in Spanish acronym) defines as small urban-area
units confined by physical and natural limits, for example streets, avenues, and rivers
[21]. They define the scale and structure of the analysis and exhibit data of labor
productivity in the manufacturing sector (Map 1).

v“r‘ :e»

Map 1: Spatial structure of the MCMA.

Applying the read and store functions explained in the past section to the geospatial
data of Map 1, we obtain a dictionary formed by id codes as keys and geometries,
neighbors, and productivity data as values of each feature. Then, we create each cell
of the GCA, using the class object (Figure 4).

Class Object
(Cell)

id code getldCode() setGeometry()
geometry getProductivity() setProductivity()
neighbors getNeighbors()

productivity

Figure 4: Cell class object

Each cell has four attributes: id code, geometry, neighbors, and productivity. The id
code is a classification number associated with every CT, geometry contains
coordinates that defines the urban polygon, neighbors refer to CTs vicinities
(contiguous and noncontiguous), and productivity corresponds to a statistical value
of the manufacture sector.
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Two sets of functions define the class method. The first returns the value of
attributes, and the second displays and modifies the geometry and productivity
data respectively.

Using the cell class, we generate an instance object that is collected in a list
object.

Then, we reproduce the spatial structure of the MCMA, using the setGeometry()
function (Figure 5).

Figure 5: Visualization of the GCA

Next, we specify the transitional rule followed the equation (2), specifically a
SAR time lag-process [19, 20, 22]. This process provides the local and simplest
mechanism to produces a change in the level of productivity per cell in the
GCA. We define it as follows:

Pit+1 = pPW Pit + &€jt (3)

where P;; and P;..; are the productivity of cell i at time t and t+1 respectively; p
is the spatial autoregressive parameter; W is the spatial weight matrix, which
depends on the productivity value of k cells associated with an i neighborhood at
time t, in,;e' and ¢, is the independent disturbance term normally-distributed.
Therefore, WP;.is row standardized as follows:
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WPR=1/nXkca, Pre “)

Equation (3) and (4) describe a scale averaging model that spreads the
productivity throughout the system based on local conditions [22, 23, 24, 25].

In addition, equation (3) only operates when the CT has at least one adjacent
neighbor, otherwise the rule follows the next specification:

Pit+1 =P Pjt T gjt (5)

where Pj; corresponds to the productivity value of the CT with the shortest
distance from i to j.

Overview of the process

To explain the dynamics of the GCA, we present a flowchart to display how every
cell interacts to each other and changes its value of productivity according to its
neighborhood configuration (Figure 6).

getProductivity()

Y getNeighbors = 0
‘ N

‘ Closest cells H Count cells ‘

+

AVP H P ‘ ‘ White noise ‘

Figure 6: Programming routine

Once cells are collected in the list object, the simulation process starts defining the
transitional rule of each of them. The productivity value is retrieved from the vector
data (getProductivity()), and each cell inspects its neighbors (spatial lag-process). If
the cell has not neighbors, it will compute the shortest distance to the closest neighbor.
This measure is based on the geometric centroid of polygonal cells, and it quantifies
a maximum number of neighbors equal to one. On the other hand, if the number of
neighbors is different to zero, each cell will apply the SAR (1) process, which we
rename as the average value of productivity (AVP). Neighbors of each cell are row
standardized, and the cell is synchronously updated.

We consider the scaling parameter p for regulating the intensity of the contagion
among cells [26, 27, 28, 29]. Essentially, from an economic perspective, three equilibria
outcomes are possible when p is equal to one: 1) all CTs have zero productivity, 2)
everyone has the same average productivity value equal to the initial condition, and
3) each CT increases its value until reaching an exogenous upper bound. Finally, we
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introduce in the spatial lag-process a white noise with the form of a random variable
iid (0,1) representing external shocks in the system.

The core of the programming routine is a loop that updates the productivity
attribute of each cell in every time step under the conditions just mentioned.
That is, at each time step the productivity value is stored in a new list object.

Neighborhood and productivity characteristics

Two important characteristics of the GCA applied to the MCMA are studied
before we present simulation experiments: neighborhood structure and
productivity value. The neighborhood structure is analyzed by a histogram
(Figure 7), where the x-axis represents the number of neighbors around a cell,
and the y-axis corresponds to the probability of a cell related to the number of
neighbors.

Figure 7: Neighborhood configuration: p =5, 0 =2

The histogram show an asymmetrical distribution with a positive skew meaning
that few cases of cells have more than 10 neighbors, and most of them have a
neighborhood formed by 10 or less cells. In particular, around 70% of cells
have four to six neighbors, the mean of the distribution is equal to five with a
standard deviation of two, and the first bin exhibits few cells with zero
neighbors or isolated cells. In brief, the neighborhood configuration presents a
high level of connectivity and contiguity, exhibiting a heterogeneous structure
that affects the dynamics and interactions across the area [30].

In addition, Figure 8 displays a distribution that exhibits the productivity value in
natural logarithms.*

This figure shows a normal distribution with a mean of 3.97 and standard
deviation of 0.8. More than 70% of cells have a productivity value between 2.94
and 3.97 representing 1.27 and 3.71 thousands dollars/employee respectively.®
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Figure 8: Distribution of productivity: p =3.97,0=0.8
Deterministic model

The first case of the spatial experiments is a deterministic model. It displays a
graphical interface and exhibits one scenario of spatial interaction, which
represents the simplest case of analysis [31]. The transitional rule of the model is
as follows:

Pi,t+1 = pW Pi,t (6)

where the productivity of each cell at time t+1, P;,;, depends on p and the AVP
of its neighborhood at time t, WP;.

The initial condition of the experiment is based on the productivity value of
each CT, and no additional inputs are added to the spatial interaction. To
simplify the analysis, we set p equal to one. Under these conditions, we expect
that the system produces contagion in the long run, where all CTs will converge to
the average initial value. Nevertheless the dynamics of contagion is uneven along
the time, the model presents important implications in terms of spatial inequality.
Figure 9 displays the sequence of the simulation in six different time steps, where
the run time is equal to 100, and each time step corresponds to a year.

Figure 9 shows the spread of productivity in the MCMA based on three levels:
low, medium, and high.® In time = 0 (initial conditions), we see a large number
of cells with low productivity values. On the other hand, only few cells have
medium and high values. In the following time periods, cells with medium and high
values extend their productivity to close areas. For example, in time = 20 and
time = 40, there is a localized and well-defined area of medium and high values.
The last three spatial visualizations show a reinforcement of increasing productivity
values. In essence, medium and high values are more probable to spread their level
of productivity to contiguous cells and produce a localized area of intense spatial
interaction.
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P

High

—

Productivity

Time = 60 Time = 80 Time = 100
Figure 9: Deterministic model

In addition, the dynamics of the productivity based on AVP values and the
initial and final distribution of them are displayed in Figure 10 and 11.

Productivity Average Growth (10g(1+x))
=
8

397

Figure 10: Dynamics of productivity
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Initial
Final

Figure 11: Initial and final productivity distribution

Figure 10 shows only a small increased and stable pattern in the AVP value.
From an initial value of 3.97, the AVP increases and remains stable around the
value of 4.02, and its dispersion decreases from 0.8 to 0.3 (Figure 11).” This
result suggests that, around the time step equal to 20, the area of medium and high
levels of productivity persists until the last time step, that is, the spatial
interaction increases and intensifies the productivity.

Random Model

Under this experiment, we consider equation (3) as the transitional rule. The use
of the random variable iid (0, 1) produces a stochastic spatial lag-process and
simulates external shocks in the system. Applying a batch processing, we run
each simulation 1000 times with a total number of time steps equal to 100.

After running the model, we obtain the following results: a mean value of 4.021
(3.9 thousands dollars/femployee), a variance equals to 0.011, and a standard
deviation of 0.113 (8.04 dollars/employee). Compared this mean value with the
initial condition of productivity in the deterministic model (3.7 thousands
dollars/employee), we see an increasing value of the AVP, approximately 5%. In
addition, Figure 12 shows an increasing dispersion of the average productivity in
three different time steps, meaning heterogeneity in every simulation. These
results confirm an incremental productivity with high dispersion in its values
throughout cells.

Time 30
Time 60
~ = Time 90

Shs 1 monen 1 s a3 s as

°93 B
Average Productivity Value (Log(1+x))

Figure 12: Average productivity distribution in three different time steps
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Finally, Figure 13 presents 10 simulations to exemplify the effect of including the
random component in the deterministic model. Figure 13 shows a wide variety of
dynamics in productivity, which fluctuates around the long-run equilibrium
presented in the deterministic model.

Productivity Average Growth (1og(1+x))

Figure 13: Teen simulations of productivity average growth

Conclusion

The integration of standard and third-party libraries into a programming routine in
Python makes the proces of building a GCA easy, if we compare it to other
computer platforms. Python’s libraries provide a set of powerful tools to analyze
spatial phenomena, generate spatial simulations, and extend the range of
application in social sciences. This integration offers the advantages to study
large and complex data and to add other libraries that cover different types of
analysis and that develop specific geospatial applications.

The proposed GCA model incorporates efficiently the heterogeneous
neighborhood structures and transitional rules related to spatial externalities. In
the case of production spillovers in the MCMA, we can extend the model to add
more variables, for example the human capital (number of years a person attends
school) and its neighborhood average value. They can complement the traditional
spillover analysis and give new insights into the mechanism of spatial interactions
in metropolitan areas.
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Footnotes

1. Another option to save and retrieve this information is the pickle module
(http://docs.python.org/library/pickle.html).
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2. Options of Python’s libraries for drawing objects are the following: Pyglet
(http://www.pyglet.org/) and PyGTK (http://www.pygtk.org/).

3. In this case, the type of neighborhood induces heteroskedasticity (the number of
neighbors is different in each cell).

4. In order to avoid negative values of productivity, we use the logarithm function:
log (1 + x), where x = productivity.

5. The inverse of the logarithmic value is computed as following: exp (z) — 1, where
z = log (1+ x). In addition, the exchange rate applied is 1 USD = 14.05 MXP.

6. The color diffusion is based on a frequency distribution of productivity per time
steps, wherethe total number of bins is 10. Low values are related to the first bins
between one to seven, medium values are between seven and nine, and high values
correspond to nine and ten.

7. The small oscillation between every time step is related to the synchronous update.
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Abstract

Results are presented from the application of a Cellular Automata (CA) model, built
using the Metronamica® software application, to the Dofiana Natural Area, a series
of interconnected ecosystems of outstanding importance for biodiversity at the
mouth of the River Guadalquivir in the Spanish Autonomous community of
Andalucia, South West Spain. A National Park since 1969 and recognized by
UNESCO as a world heritage natural property since 1994, Dofiana has nevertheless
suffered serious degradation and loss of large areas of marshland, dune and coastal
habitat since 1950, through tourism development, intensive agriculture and
afforestation of fast growing non-native tree species (e.g. Eucalyptus), and
corresponding contamination and over-exploitation its aquifer. The paper discusses
the development of a pilot model for Dofiana, from analysis of land use dynamics,
through technical calibration procedure and assessment of calibration gioodness of
fit to cross tabulation and map comparison.

A trial simulation is presented. The paper concludes with a brief discussion of the
potential of the model for simulation of future scenarios, and the improvements that
will be made in the construction of the full model.

Introduction

The Dofiana Natural Area (hereafter Dofiana) is a series of interconnected
ecosystems of outstanding importance for biodiversity at the mouth of the River
Guadalquivir in the Spanish Autonomous community of Andalucia, South West
Spain. A National Park since 1969 and recognized by UNESCO as a world heritage
natural property since 1994, Doflana has nevertheless suffered serious degradation
and loss of large areas of marshland, dune and coastal habitat since 1950, through
tourism development, intensive agriculture and afforestation of fast growing non-
native tree species (e.g. Eucalyptus), and corresponding contamination and over-
exploitation of its aquifer. Despite a series of measures aimed a promoting
sustainable development, this important natural area remains highly threatened by the
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modern development paradigm of growth without limits [1]. In the following
communication, results are presented from the application of a Cellular Automata
(CA) model, built using the Metronamica® software application, developed by the
Research Institute for Knowledge Systems (RIKS), of Maastricht, Netherlands, to
Dofiana. The research was carried out under the remit of the DUSPANAC research
project (funded by the Autonomous Body for National Parks (OAPN) on behalf of
the Spanish Environment Ministry). The project is ongoing, but nevertheless, three
important objectives have been already achieved: Preliminary land use change
analysis [2]; Stakeholder engagement for determination of model parameters [3] and
construction of a pilot model, subject of the present communication.

Aims of the paper:

1. to provide a brief background to the application of CA-type models to modelling
of natural areas.

2. To explain the modelling procedure employed, which may serve as a prototype for
future land use modelling of natural areas.

3. To review the lessons learnt from the pilot model, and the steps which will need to
be taken in future to improve the model and its applicability to decision support in
the Dofiana natural area.

The contribution of CA to land use modeling
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Map 1: Dofiana study area

Most modern-day applications of CA are based on the work of von Neumann in the
late 1940's, posthumously published as The Theory of Self-Reproducing Automata
[4]. The application of CA to land use is usually attributed to the geographer Waldo
Tobler, who developed the foundations for a raster-based "cellular geography" [5]
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Early CA land use models were aimed principally at modeling urban growth (e.g.
[61), but the discipline has since expanded its scope to take in non-urban applications
(e.g. [7]), and has increasingly moved beyond pure description and explanation of
patterns of land use growth and change into, for example, policy recommendations
for greener growth and sustainable development (e.g. [8]), integrated decision
support and participatory approaches [9] and natural hazard assessment [10]. While
CA techniques have been applied to the study of a wide range of natural and
ecological phenomena [11], studies of land use change in natural areas using CA-
type models are less common, principally because the pattern of cellular evolution
exhibited in a typical CA land use model is particularly appropriate for modelling
urban land use change. However, some notable examples do exist. White et al [12]
constructed an integrated CA model for the Caribbean island of St Lucia, designed as
a decision support tool to explore possible environmental, social, and economic
consequences of hypothesized climate change. In this work (SimLucia), evolution of
natural vegetation, forest and agriculture was actively modelled [12]. In a more
recent study, Moreno et al [13] incorporated a CA known as SpaSim to model the
dynamic evolution of a forest preserve in Venezuela using land cover classes such as
forest, forest plantation and agriculture. The work aimed to understand the land cover
dynamics that have occurred in the reserve, simulate the effect of land use policies on
the reserve, and evaluate their effect on sustainability of the forest reserve.

CA modeling and Dofana

In Dofana, the researcher is confronted with two worlds, two opposing poles, of
conservation versus development. The development boom, principally based on
tourism and intensive agriculture, has transformed the region over the last 60 years,
from one of the most impoverished in Spain to the point where per capita income is
above the national average [1]. Conversely, there has also been increasing
recognition of the importance of Dofiana and ever greater efforts made to protect it.
Unfortunately, over the same time period, areas outside the limits of the protected
space have become increasingly degraded and are clearly affecting the protected area
itself (e.g. [14]. The conservation versus development model has thus entered a crisis
phase. However, though it is quite easy to see what the problem might be
(development that favors the regional economy in the short term but destroys an
important natural area), it is not at all easy to bring about a solution. CA land use
models are powerful tools for understanding this type of complexity, as they allow
actor decisions to be represented as land use consequences in the territory. The CA
neighborhood rules of attraction and repulsion are ideal for representing the
competition and pressure for the same land use location that is so acute in, and so
characteristic of, the Dofiana natural area.

Methods

Drawing on historical patterns of land use change since 1990 detected by cross
tabulation analysis of corine land cover maps [2], together with information gathered
in participatory workshops, an initial, or 'pilot' CA model was developed. The pilot
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model was an essential precursor to the main modeling phase and development of
future scenarios as it allowed for the testing of software, data and methodology prior
to commitment of extensive resources.

The modeling software that we used in this project is part of a suite of software, a
tool kit called Geonamica®. Metronamica®, the land use modeling component of
Geonamica®, is a geographical land use model (sensu Tobler [5]), operating in a
graphical application environment for the windows platform. At the core of the
model is the transition potential (TP) computation which determines the future state
of the cells (change or no change). TP is calculated as a function where a set of
endogenous factors interact to update the state of the cell in every time step
(oneyear). These factors are neighborhood rules, which determine the relationship
between different land use classes in terms of attraction and repulsion; accessibility
to facilitate or constrain land use conversions depending on the distance from the
cells to the network; zoning, that is, extant land planning regulations; a set of
biophysical suitability parameters; and a stochasticity variable in order to avoid over-
determinism in the model. This TP function determines the likelihood of each cell in
the model to change from one use to another.

DUSPANAC Project Flow diagram
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Figure 1: the Modeling chain

Construction of the model followed the procedure defined by RIKS [15], this can be
briefly summarized as follows:

1. Analysis of dynamics of land use/cover change (LUCC) in the territory to be
modeled.

2. Definition of activity types according to LUCC dynamics observed: land use
classes must be divided into three groups, vacant (passive, does not grow but is
occupied by other land uses - e.g. non-irrigated crops) function (active, dynamic, will
grow and occupy other land uses, e.g. urban residential) and feature (static,
restrictive, will not change and cannot be occupied by other land uses - e.g. water)
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3. Introduction of initial land use map M1 (corine 1990), classified according to
activity types.

4. Introduction of second land use map M2 (corine 2000), for model calibration.

5. Introduction of land use demand for function land use classes for calibration, taken
from M2

6. Establishment of parameters (neighborhood rules, accessibility, suitability, zoning)
7. Simulated map MS2 for technical calibration

8. Other simulations, scenarios etc.

After all parameters have been set (steps 1-6), transition potential is calculated for all
of the maps in the model, and then applied to M1 to produce a simulation of change
over the period between M1 and M2, expressed as a new map, MS2 (step 7). In this
way, the first part of the model calibration begins, which we refer to here as technical
calibration. Once technical and empirical calibration (see final section) have been
completed satisfactorily, land use simulations based on future scenarios can be
developed.

Technical calibration procedure

Technical calibration of the model is defined here as the process of obtaining an
acceptable degree of fit between the simulated map, MS2 and the real map, M2 of
the territory at the second date (in our case, the year 2000). The degree of fit gives us
a guide to the reliability (confidence level) of the model with respect to the land use
change trends observed in the territory.

Difiana 1990-2000, losses and gains (ha) ‘:‘h

182

n losses o change
= chang

Figure 2: land use changes in Dofiana, 1990-2006,
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Land use change dynamics and activity types:

With reference to figure 2, the principal LUCC in the territory observed from map
comparison between 1990, 2000 and 2006 can be summarized as follows:

1. Significant expansion of fruit and berry plantations (F) between 1990 and 2000
(Intensive cultivation of citrus and strawberry). Principal contributing land uses (in
order of greatest to least contribution) were grassland (PN) (55 ha), other irrigated
crops (TRP) (44 ha), non-irrigated crops (TLS) (30 ha) and sclerophyllus vegetation
(VE) (15 ha). Other irrigated crops have also increased, taking 29 hectares and 12
hectares from VE and shrubland (MBT) respectively.

It is clear that these changes represent agricultural intensification; they have all
occurred outside the national park, just inside the area which is also excluded from
the zone of lesser protection comprising the natural park. A 50 ha area of formerly
irrigated land (TRP) in 1990 had become crop mosaic (MC) by 2000. Thus, in terms
of land use dynamics (neighborhood rules), we see that TRP, PN, TLS and MBT are
likely to be sensitive to occupation by F, and that MBT and VE are sensitive to
occupation by TRP. Clearly, given the location of the new intensive cultivation,
zoning will be very important in the model. F and TRP, and probably MC as well,
need to be designated as function activity types in the model to reflect their
susceptibility to increase, taking over other land use types.

2. Important increase in MBT between 1990 and 2000, taking 912 hectares from
broad-leaved forest (BF), and 96 hectares from mixed forest (BM). This increase has
occurred principally in the north-west extension to the natural park (Figure 4). As
MBT has continued to increase in the second period (2000-2006), this time from
conifer forest (BC) (648 ha) and BM (137 ha), expansion of shrubland should be
considered an important dynamic and also will be assigned to activity type function.
3. The vulnerability of this location to development of tourist infrastructure is
evidenced by the construction of a 52 hectare camp site (IDR) between 1990 and
2000 in a zone previously given over to natural vegetation (VE) on the shoreline just
to the north west of the national park (in a small pocket of land lacking natural
protection related to the tourist resort of Matalascafias). A 53 hectare construction site
is also in evidence. In the second period (2000-2006), 15 hectares of which had
become urban fabric by 2006. It is clear that all types of urban fabric (TUC and
TUD) as well as construction sites (ZC) and sports and leisure facilities (IDR) must
be assigned to function activity types.

Land use demand:

Table 1: Land use demand for the 8 function activity types

Description Spanish acronym ha 1990 ha 2000 ha 2006

Continuous urban Fabric TUC 407 407 451
Discontinuous urban fabric TUD 6 6 6
Construction areas ZC 53 53 38
Sports and leisure facilites IDR 13 65 65
Permanently Irrigated land TRP 419 369 351
Fruit and berry plantations F 100 241 241
Crop Mosaic MC 0 50 50
Shrubland MBT 3307 4464 4939

On the basis of the observed LUCC dynamics (Table 1), land use demand was set for
the 8 function classes.
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Neighborhood rules:

The neighborhood rules (methods, step 6) are key to the transition potential
computation which comprises the core of the CA model. To determine the
neighborhood rules, relative values representing persistence, attraction and repulsion
are applied to all land use categories with respect to the function categories in the
model (Figure 3). These parameters are then applied by the model to each cell with
respect to all other cells in its neighborhood, a total of 197 cells including the cell
itself (up to 8 cells in any direction). As only the cells belonging to the function
categories are have the ability to relocate within the model, neighborhood parameters
must be set to establish their behavior, with respect to themselves (persistence) and
other functions or non-functions (attraction and repulsion). The most intuitive way to
explain this concept is in terms of a graph for each land use, having x representing
distance in any direction away from a cell containing that land use and y representing
relative force of attraction (RFA).

Other parameters, accessibility, suitability and zoning:

Three network layers were included in the pilot model, roads, irrigation channels and
rivers. In the initial calibration, accessibility was applied only to the irrigated crops
(TRP) and fruit and berry plantations (F) land uses, principally because these were
the most important dynamics likely to be affected by accessibility conditions. Zoning
parameters were established on the basis of the land use restrictions of the use and
management master plan (PRUG), with highest and second highest level protected
areas (reserve and restricted use) being designated strictly restricted (no occupation
permitted by new land use), protected areas outside of these zones weakly restricted,
and other areas, such as the buffer corridor, unrestricted for all anthropogenic land
use functions. Non-anthropogenic land use functions (shrubland) were allowed
everywhere.

Technical calibration goodness of fit:

The goodness of fit of the technical calibration depends on two key parameters,
quantity and location. As we have seen previously, quantity is determined initially by
the input demand for each land use, but ultimately by the amount of available land on
the map relative to the ranking for that land use in the transition potential table; that
is, even if all demand for one particular land use is not completely allocated, the
model run may terminate anyway because all available locations have been filled
with other land uses that scored more highly in the TP ranking. Although not all
demand will necessarily be allocated, this is quite a satisfactory way to deal with real
world pressure, competition and uncertainty. This makes it difficult to estimate the
success of the technical calibration exercise solely in terms of quantity. A good basic
starting point is to compare the cross tabulation for M1 and M2 with its counterpart
for the simulated map (M1 and MS2); Table 2 (below).

It can be seen that there are some early successes, and quite a few areas where the
model has not performed well. For example, the expansion of the shrubland category
(MBT) over this time period has been adequately represented in terms of gains from
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the relevant categories in approximately correct proportions. Though there is clearly
room for improvement, the model seems to be beginning to reflect the LUCC
observed in reality. Turning to the expansion of fruit and berry cultivation (F), we can
see, from the diagonal, that the inertia of this category (the RFA with respect to itself;
Figure 3) is successfully preventing migration or occupation of existing F. The 141
new hectares required have been drawn from grassland (PN) and (TRP), again
reflecting the real situation. However, while in the model the major part of the gain to
this category has come from PN, in reality we can see that vegetation (VE) and non-
irrigated land (TLS) have also contributed, something the model has been unable to
reflect.

Pressure and competition between land uses - represented by forces of

attraction and repulsion:

Example 1 (top), persistence (intertia) of fruit and berry plantations (F)
Example 2 (bottom), attraction of non-irrigated land to fruit and berry
plantations

nt mutual attractiveness (inertia) a high attiraction value
0} must be given to distance 0 (on the cel value itself)

Force of attraction (relative)
-
g
5

Neighbourhood distance (cells)

TLStoF

TLS lightly aftractive to Fat distance 0, and up to distance 2
with gradually decreasing intensity

Forcs of attraction (relative)

1 2 3 4
Neighbourhood distance (cells) -

Figure 3: Examples of neighborhood rules

In this case the adequate response would be to return to the neighborhood rules and
try to establish a greater attractiveness for F at distance 0 for the VE and TLS
columns. The loss of 50 ha of other irrigated land (TRP) has been correctly modeled
with respect to F, which has gained 35 ha in the model against 44 in reality. But
again, something is not quite right, as in the model it can be seen that TRP has not
passed 50 ha to crop mosaic (MC), as happened in reality (MC has instead gained
from PN) and has lost 19 ha to TLS, a vacant land category which should not have
gained. This behavior, gain to a non-function category, is probably caused by the
model seeking to obtain the correct demand for TRP (which has decreased over the
modeled period) and allocating excess cells to the first available category (i.e.
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category O, TLS). It needs to be remembered in these cases that the demand for
vacant categories is invisible to the model. In this case, it is very likely that this
unwanted behavior can be compensated for by making TLS more attractive to F, thus
solving two problems at once. MC needs also to be made more attractive to TRP so
that the model does not find itself with surplus demand at the end of the run. On this
basis, further adjustments were made to the neighborhood rules, resulting in some
improvements (Table 3).

Table 2: comparison of cross tabulation results. Corine 1990 (M1) occupied the columns in
both cases. M1 has been crossed with the first simulation attempt (MS2) at top, and with the
real corine map for 2000, below.
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Table 3: second comparison of cross tabulation results after adjustment of neighborhood rules.
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With respect to location, once the quantity has been approximately correctly located
by the iterative process described above (set neighborhood rules, output cross
tabulations, adjust neighborhood rules, return to cross tabulations etc), the more
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intractable problem of location can be considered. The key to a workable useful
model (see [16]) lies in the production of a visually acceptable simulation, where
land use changes can be seen by model end users and stakeholders to have occurred
in locations where available empirical knowledge suggests it is likely to occur.
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Map 2: Map Comparison results for 4 key land use categories. In the legend, map 1 refers to the
real map for the year 2000, while map 2 is MS2, the calibration simulation for the same date.

The results of the model for MS2 (the year 2000) are shown above. Simple visual
inspections were carried out in the Map Comparison Kit, a software application
provided by RIKS for free download at http://www.riks.nl/mck/. Though the
software does offer a range of techniques for statistical comparison of maps, in this
case, the simplest, visual comparison method (per category comparison for each land
use class) was used in this case to assess whether the simulation performance was
broadly acceptable. The model shows success in some areas, for example (compare
with Figure 2) in the area of extension to the park proper in the northwest corner the
growth of new shrubland following loss of eucalyptus plantation has been simulated
with a fairly high degree of success (MBT, map 2A). It can also be seen that the
claims of success in terms of quantity (above) are not borne out with respect to
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location. Though new hectares of fruit and berry cultivation (F; map 2C) were
simulated in terms of changes to and from the appropriate categories, the simulation
did not choose the correct locations. This is probably because there were a large
number of possible locations given neighborhood, accessibility and zoning rules
relative to a small quantity of new F to be allocated.

Pilot simulation: massive expansion of citrus and strawberry

The final part of the technical modeling process consists in the application of the
calibrated model to future scenarios. For this purpose a simple simulation was built
on the basis of empirical knowledge of the evolution of the Dofiana natural area and
the results of cross tabulation analysis of land use changes. This scenario postulates
an explosive growth of citrus and strawberry cultivation to a total demand of 2000 ha
in the currently available locations by 2030 (Map 3). The simulation, which we have
called massive expansion of citrus and strawberry, is extreme. However, although
continued expansion of intensive cultivation in the zone immediately adjacent to the
protected natural area is highly undesirable from the point of view of conservation,
the historical tendency does indicate that further expansion is possible. It is very
unlikely indeed that an expansion of intensive citrus and strawberry cultivation as
great as that postulated in this scenario would or could take place, but sometimes
what if... type scenarios may be important in communicating future threats or risks to
stakeholders or testing resilience of zoning measures against hypothetical worst-case
scenarios.

/

2030 Massive expansion of citrus
and strawberry scenario

2000 Real map (corine land cover)

Map 3: Results of the massive expansion of citrus and strawberry scenario for the year 2030.
Areas of fruit and berry cultivation are numbered. This highly unrealistic test scenario
nevertheless illustrates the potential of the model to address real world questions of interest to
natural resource managers, such as: what areas are most vulnerable to expansion of intensive
cultivation?

Conclusions and future work to improve the model

At present, the work presented here has not attempted to integrate knowledge outside
the realm of the technical accuracy parameters presented here by involving the
stakeholder community in the model building process. It is generally accepted that
decisions are likely to be implemented with less conflict and more success when
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they are driven by those who are likely to bear their consequences [17]. Though
participatory work is ongoing, some stakeholder feedback has already been obtained
[3]; in summary, stakeholders and researchers are in agreement that the model could
be improved in the following ways:

1. Improved land use mapping. The corine land cover data used in the pilot study is
too simplistic, future modelling work will employ larger scale land use/cover maps

(3]

2. Accessibility maps were not included for all land cover types in the pilot model.
Accessibility to infrastructures is likely to inhibit or stimulate LUCC, so including
accessibility for a wider range of land use classes is likely to improve the model.

3, Suitability maps were not included in the pilot model. Physical suitability is
important to avoid allocation of particular land use types in areas where they are not
normally suitable (e.g. irrigated crops in mountain areas).

4. Study area does not take into account a large enough area to reflect all possible
implications in the territory; the study area will accordingly be extended to include
the whole of the hydrological catchment of the river Guadiamar (Map 1).

5. At present, the scenarios discussed are very simple, and currently not aligned with
those developed for Dofiana through participatory workshops by Palomo et al [18].
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Abstract

This paper aims to investigate a new way of locating potential impacts of flash
floods. Mapping surface flow concentrations, using a new metric based on a cellular
automaton RuiCells, is shown to qualitative align with observed and known
instances of damage caused by flash floods in 4 small ‘dry valleys’ located in
northern France (Parisian Basin). Numerical simulations enable the assessment of
the relations between the organisation of thalwegs networks and surfaces for a given
basin form. An index of concentration (IC) allows detecting the confluences in
upstream of which networks and surfaces are spatially well organised. A strong
correlation between observed damage, field experiments, local knowledge and maps
of IC index exists as simulations underline many places where flash floods induce
important material or human damage and where further surface flow concentration
results in highly-incised gullies. In rare cases, no validation is possible because
nobody can confirm the degradations.

Introduction

The origin and the prediction of flash floods in small and ungauged basins is
getting increasing attention [1, 2] and the last decades have seen an increase in
forecasting of such events in numerous countries [3, 4,]. Such type of natural
hazards threatens people, causes increasing losses of buildings and infrastructures
and occurs in a short time-duration. Generated shortly following high rainfall
intensities, flash flood are characterized by sudden onset or rapid rising time. A
surge may rush down the main valley just a few minutes after rainfall has
peaked [5, 6]. To better address the lack of available information, various models
and approaches have been carried out. By necessity, the investigations on recent
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flash floods generally are event-based and opportunistic as they enhance the
information content [2, 7]. While meteorological observations provide relevant
details on the timing and location of convection in the storm environment [8],
hydrological and physical processes remain still difficult to assess because: i)
flow measurements and classical field-based experimentations (as the
reconstitution of maximum peak discharges thanks to slack water deposits) are
rarely collected in basins of small-size; ii) these flood are insufficiently
documented and are difficult to monitor in real time because they produce
destructive effects to measuring devices; iii) the infrequency of these events
makes the statistical analysis and calibration of models delicate.

In this study, our objectives are to use a cellular automaton approach (the CA
known as RuiCells — 9, 10, 11] in order to: i) promote further understanding of
the effects of runoff concentrations which are influenced by basin form, slope and
the drainage network during flash floods and ii) to measure the potentials of
concentration since local to global scales. The framework used is common to
other cellular automata and respect two main properties: a CA is a model
simplifying the reality to a group of automates dealing with information and
inducing cellular actions; CA use precise and finite state, as homogeneous and
interconnected cells. The guiding principle of RuiCells follows the idea that
mechanical rules of flow based on topography can be combined with a cellular
automata representation of spatial processes to better assess the complex relations
between basin structures and surface flow pathways. While numerous distributed
hydrological models have been realized with Digital Elevation Maps, none of them
allow for the estimation of potential surface flow concentration in all parts within a
basin. Numerous studies have typically focused on the relation between the global
catchment morphology and its hydrological response measured at the final outlet.
These studies underlined difficulties encountered when linking local responses (sub-
basins or hillslopes) to this global behaviour and this aim has been one of the main
issues for geomorphologists since the 1970’s [12, 13]. A few studies have
successfully shown that the drainage network organisation plays a key role on
hydrological functionality. Others recently defined the global response as the result
of linear system (with a linear relation between mean discharges and the basin sizes)
and show that global catchment response can be summarized by an IUH, Instantaneous
Unit Hydrograph [14], evolving in a Geomorphologic Instantaneous Unit Hydrograph
[15]. However, in this study we use a cellular automaton approach to better link the
local hydrological rules to the emergence of global hydrological responses. Our main
goal is to identify all sub-basins in which high surface flow concentrations can be
hidden at larger scales and this approach is applied on small- size basins where
floods occurred in order to create prevention maps. Assuming that this tool is
relevant to the planning of and protection from such types of events, it could be
useful for the understanding of floods in valleys which remain ungauged. Moreover,
definition of flood potential in temporary streams is required to assess the extent of
probable flooding in the future.
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Framework and structure of the specific French CA model RuiCells

Previous experimentations in CA modelling for surface water flow provide several
advices and recommendations. The main difficulty in these models is generally to
establish all the links between topographic variables, such as the elevation and its
derivative, and hydraulic variables as water fluxes. Furthermore, from a numerical
perspective, square lattices induce problems for simulating the runoff routing [16],
as surface flows do not follow the real drainage. Different studies also highlighted
the critical influence of the DEMs cells size on the accuracy of extracted networks
[17, 18]. Consequently, in the CA model RuiCells, we choose to use a lattice based
on triangular, regular and interconnected cells based on a Digital Elevation Model
(DEM) and we define simple rules to simulate the interactions between basin form,
slope and the drainage network.

The structure of RuiCells is basically summarized as follows. The first step
permits to create a topological mesh in triangular finite elements. In this, the
direction of the steepest slope gives the downstream direction of flow and this
information available in each cell is draped over the DEM (figure 1). The
lowest diagonal was chosen to obtain more realistic flows. Each cell contains
the pointer to its lowest downstream neighbour. The second step assigns
one hydrological rule for each cell: the triangular facets represent elementary cells
on hill-slopes; the linear portions the thalwegs; and several nodes the local closed
depressions. Combining these rules in the third step, we aim to simulate the
interactions between these various surface water flows [18, 19]. Each cell is
linked to upstream / downstream cell(s) by a flow graph to form a cellular unit.
The connectivity between those cells is directed predominantly by the
morphological link structured by the mesh (or lattice) as well as the
neighbourhood topology of cells. There, contrary t other CA classical
models, flow pathways are not only guided by the neighbourhood or
vicinity conditions. This approach assumes that linear runoffs and spatial
runoffs are dependent and a synchronous advection operator also avoids the
problem of order in calculi. Indeed, process is iterative in RuiCells. It means
that surface, flows or other values used during the simulation flow at the same
moment. Consequently, RuiCells is based on a generalized cellular automaton
model, in which cells have different facets and in which flow pathways represent
real effects of the morphological structure and not only its topology. The
structure of the CA used here is different from classical cellular automata
models: we respect formal guidelines (a spatial lattice, a small number of states,
one iterative process) but we adapt them to answer to one hydrological problem
(hence, important changes appear for transition or neighbouring rules). So it can
be considered as a GCA — Geographical Cellular Automata [20].
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Figure 1: Construction of the cellular unit based on a Digital Elevation Map in RuiCells

The Cellular Routing Scheme (CRS)

At the beginning of the simulations, cells are initialized with their own surface
and the automaton handles the advection operator moving each surface between
each cell simultaneously. We conserve the main property defined as locality in
classical Cellular Automata [10]: the transition rules operate on cells directly
based on local neighbourhood. But in this case, we do not use the Moore (4) or
Von Neumann (8) neighbourhood (for example) because the surface flow follows
the downstream direction as defined previously. Here, the Cellular Routing
Scheme (CRS) depends on the surface flow from each cell and on the updating
of the values of all the sub- states. Surface flow is routed downstream via each
row of cells until the downstream boundary is reached. The main difficulty rises
when two neighbouring cells exist. A previous study has shown that a flow
partitioning in various directions is better [17] The flow dispersion is classically
deduced by dividing the flow between a maximum of two neighbouring
downstream grid cells [21]. However, the routing scheme used here is
proportionally partitioned according to the slope angle and such a procedure
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improves the diffusion of surfaces on each cell (figure 1). The triangular mesh
gives satisfactory results, particularly in floodplains and thalwegs.

Simulation outputs

Graphs obtained at the end of the simulation process show the sum of surfaces at
interaction and not only the number of cells as a function of distance n from the
outlet. Steps are not time but rather length-steps because the surface flow diffusion
depends on the spatial lattice size. So, these graphs give a picture of the
theoretical spatial behaviour of a given basin in two dimensions and improve
previous methods. The width-function defined by Shreve (1969) informed on the
number of links in the network at a flow distance x to the outlet but the graphs
obtained with RuiCells are not only based on the distance along networks. The
Link Frequency Distribution or the area-distance-function proposed by Kirkby
(1976) also not gave the same results because the distribution of pixels covering
the drainage area was always used [13], while the surface flowing in RuiCells
follows three deterministic rules (differences between surface, linear or node
transition) and is based on a triangular lattice. For the same reasons, this
modelling approach offers more realistic results than those obtained with the area-
distance-function and differs from those using a surface flow travel time
probability distribution through networks [13] as time is not integrated during the
CA iterative process.

A specific index to measure surface flow concentrations

To quantify the surface flow concentrations at local scales, we propose to divide
the highest peak of surfaces (Smax) observed on the surface flow graphs by the
square root of the basin area (4°) located upstream (figure 2). Smax is equal to
the highest line of cells located at a distance from the outlet and is measured at a
given iteration (ItMax). We also divide Smax by the square root of upstream in
following the well- shown relation between discharges and square root of basin
areas. We multiply the ratio by 100 to render the analysis easier: the value
obtained for Smax corresponds to a percentage of the average diameter of the
basin. This index of concentration — IC — enables us to survey the increase of
basin width with the cumulative distance of surfaces from the outlet and it offers
a new metric to encapsulate the intensity of flows (figure 2). Values automatically
calculated during the simulation process are available in each cell and have same
significance regardless of the basin area if the numerical model never changes.
The results should be interpreted differently if the resolution evolves. Even if
indexes do not have a scalar dependence, a numerical model with higher
resolution naturally gives lower values for the peak of surfaces (Smax) and
consequently for the IC index. In this study, we always use a DEM of 50 meters
long. When IC indexes are equal to 50, it indicates a medium surface flow
concentration; i.e the peak of surfaces equals to the half of the average
diameter. When IC indexes exceed the value 55 (this arbitrary threshold was
validated during our first field investigations), networks and surfaces appear
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really well-structured. Points or linear with IC up to 55 are potential points of
important concentration of surface flows on a short distance. Next, we investigate
whether these simulations capture what is occurring in reality and whether they
should be linked to instances of damage after previous flash flood events on the
five studied basins.
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Figure 2: Calculation of the specific Index of Concentration, uniquely on the point 3 here.

A case study: potentials of concentration in four basins of small size
(<25km?)

Maximum surface flow concentrations emerge mapping the index of
concentration (IC) in five studied basins. The basin of St-Martin presents high
value (IC = 56.3) at point 2 as networks and surfaces are well-organized in
upstream (figure 3). Values greatly increase from points 3 to 2 but gradually
decrease downstream from point 2: the maximum peak of surfaces never changes
while upstream area increases. In the basins of Warnette, the same patterns are
observed (high values and compact forms) but the IC index is not so important
because areas present a gentle compactness.

In L’Eaunette, the flow concentration suddenly increases in the main channel due
to cumulative and constant contributions of the sub-basins into point 2. The basin
of Aunette presents internal homothetic behaviour [13] due to several
concentrations measured at the outlet of upstream sub-basins. Values decrease
between confluences but the flow concentration increases again at points 2 and 3
and at the final outlet. In these basins, the IC index remains high when the peak of
surfaces and the average diameter proportionally increase. Concentric organization
of surfaces in compact form, regular contributions of sub-basins and self-organized
networks explain high values. On the other hand, elongated shapes, spatial shifted
contributions of sub- basins and non-hierarchical networks flatten this IC index.
This result explains why indexes are unrelated to the basin scale and confirms
that a basin area is convenient for investigating the spatial behaviour of a basin
in self-similar basins but not in non-self similar areas [22].
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Figure 3: Maps of IC obtained on four studied basins in Northern-France.

Links with instances of damage observed after flash flood events

Field observations were conducted in the five basins just a few days after flash
flood events (figure 4). In the basin of Saint-Martin, high IC matched exactly the
sections where most of the damages were registered after the event of June
16th, 1997. The section with IC up to 50 [between points 3 to 2, going upstream
to downstream] presented erosions in the road along a distance of 500 m with an
average depth ranging from 1 to 2 m. Several cars were dragged resulting in the
death of 3 people. In this section, high concentrations induced high level of risk
for urbanized areas: the sudden rising peak occurred in less than 15 minutes,
taking people outside by surprise. Sediments, stones and roundballers were
transported up to the final outlet located 2.1 km full downstream. Extensive
financial costs (3 M €) and losses in human life were finally linked in this section
to high surface flow concentration which were aggravated by farming upstream
areas [11]. Other damage was located at the overall outlet, where urbanization
faced to flood. In the basin of L’Eaunette, inundated areas and damage were also
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correlated to the simulations. Inhabitants, field measurements and videos confirm
that the water levels reached 1 m to 2.3 m in the center of Villers-Plouich, where
gravels, sediments (clay, limestones) and straw deposits in several houses exceed
50cm. Collective water networks were saturated in the western part of
Gouzeaucourt, but the sudden peak wave appeared clearly along the road D917
from the sub-basin Bois Gaucher just after the confluence identified as the first
upstream point with IC up to 55.
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Figure 4: Links with instances of damage on the four studied basins (related to the figure 3).

The water-treatment plant located near the D917 was also affected, resulting in
water pollution. Forests downstream tried to reduce the effects of flow
accumulation, thus flooding decreased where the river joined the town of
Marcoing (located 3.1 km in the north). The other points with high IC on the
basin of Aunette sustained less damage. In rare case, as in the basin of
L’Eaunette (figure 4), high IC exists in grasslands and in uninhabited areas. As
nobody lives near these sites, correlation between simulation and material losses
is difficult to evaluate. But in each case study, hydrological problems have been
observed due to surface flow concentration, particularly along roads which

74 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



Douvinet et al., Detecting surface flow concentrations

enhance flow velocity. Thus mapping the IC values appears to be a good
indicator of what is taking place on the ground. Intersecting morphological
process, numerical simulations and damage due to flash flood offers promising
prospects.

Discussion

Previous reviews have focused on the effects and impacts of morphological
features on hydrological responses over the past forty years [13, 22, 23]. But
well-assessing the dynamics and potentials of spatial behaviours remains
challenge. Traditionally, the width-function or the distance-area function provided
methods to characterise the catchment response as a function of its
geomorphologic properties. But these methods present important drawbacks [11]:
they describe morphological features in a planar dimension and they never
consider the dynamical impacts of topography on surface flow concentration.
Some reviews indicated other limitations such as scale dependency [24] or fractal
properties which can falsify the results of compactness or circulatory indexes
[25]. In this case, with a CA approach, we propose a new metric to account for
the interactions between networks, forms and surfaces. Hortonian systems present a
regular increase of the spatial behaviour and of the surface flow concentration due
to regular contributions from the tributaries. It clearlyconveys internal homothetic
behaviours when several high surface concentrations are observed at several
outlets. In addition, simulations show original patterns such as a decrease of
surface concentration due to non-hierarchical organisation of networks, or various
internal efficiencies. Mapping the IC (Index of Concentration) permits to
calculate and quantify this concentration in all parts of a given basin. In
summary, this study confirms that more than the basin size, the morphological
structure and that the spatial organisation of networks determine the distribution of
surface flow concentration and the potential accuracy of runoff processes.

Conclusion

The understanding of flash floods in small and ungauged dry valleys is hampered
by a lack of hydrological and geomorphological data. The rareness and violence
of such events do not render the measurement of the role played by the
topography easy. In this study, we propose to use numerical simulations based
on the cellular automaton RuiCells as a new metric of measuring dynamics of
spatial behaviours across scales.

The Index of Concentration allows measurement and quantification of the dynamic
effects of morphological components from local (cellular) to global (outlet) scales on
surface-flow concentrations. Morphological systems defined by the relationship
between the basin form, network, surface and its distance to the outlet, appear of
paramount importance compared to basin size. This information has been suggested
theoretically for a long time but this cellular application can confirm such evidence.
Some basins such as L’Aunette basin present internal homothetic behaviour but others
present local concentration which remains hidden if we stay at the global scale (Saint-
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Martin). Using the IC, we detect where the surface flow concentrations can
suddenly appear and induce damage on houses and/or roads. Validation with real
losses, local knowledge and field measurements in these five study basins gives
satisfying results even if damage in some places remain unknown due to the lack of
people to confirm such observations. In addition, the strong interaction between land-
use cover and topography requires important attention at local scale: high percentage
of cultivated areas upstream points of concentrations in the Saint-Martin and
L’Eaunette basins explain violent onsets despite these areas representing a small part
at the global scale. This work is in progress to identify other basins in which cultivated
areas are dominant upstream concentration. This work is being carried out in 60
basins in the Nord-Pas-de-Calais and 180 basins in Seine-Maritime. Our hope is to
be able to help risk managers to locate areas with high exposure to flash floods to
plan structural measures to reduce such sensibility to violent hazards.
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Abstract

Transition rules form the main and most important component of the cellular
automata (CA) as they control to a great extent the model behavior and output.
Contributing to the ongoing effort in the literature, we present in this paper a data
mining based approach to empirical derivation of CA transition rules. The
methodology employs the Naive Bayes (NB) classification to predict future
generations of the automata and an extended spatial representation of the NB
nomogram to visualize the classifier and examine intraregional pattern differences.
The methodology is implemented using free and open source software and libraries,
and is illustrated in the case of modeling dynamics of an invasive species, namely
Phragmites australis. The results suggest that the proposed methodology has high
potential to provide transition rules and capture intraregional differences of the
process modeled. The extended spatial representation of the classifier nomograms
gives insight into the classifier and reveals varying patterns of neighborhood
influence among subareas within the studied site.

Introduction

The cellular automata (CA) paradigm has attracted much attention in modeling
spatial processes in both natural and urban environments [1, 2]. Its clear definition of
space and time, flexibility for relaxations over the original form, and compatibility
with the GIS raster format increase its potential and applicability to a number of
domains.

Amongst the CA components, the transition rules have a direct and large influence
on the model behavior [3]. In the original form of CA, transition rules are
deterministic and based on the states of the cell and its strictly defined neighbors. In
order to cope with needs of the environmental and urban systems, certain relaxations
of this form are needed [2] as purely deterministic models may yield inaccurate
results. These relaxations are needed due to (i) randomness, which is inherent in
processes in the natural and, to some degree, the urban environments, and (ii)
uncertainty, which is embedded in our knowledge of those processes. Also,
transition rules are primarily a function of the neighborhood composition, and for
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many applications the shape and size of the “influential” neighborhood may vary
[3]. Finally, in environmental and urban systems, there usually are a number of
external significant variables that need to be incorporated in the transition rules
along with the neighborhood composition [4].

CA transition rules control to a great extent the outcomes of the model. Successful
modeling depends on the transition rules capturing the essentials of the modeled
process [3]. This requires understanding of the causalities and mechanisms of the
process in question. While causal relationships between the process and the external
factors might be indicated in the literature, the quantification of those relationships is
not always available [4]. Especially the composition and configuration of the
neighborhood has to be derived empirically.

Methods that have been applied to derivation of CA transition rules include multi
criteria analysis [5], principle component analysis [6], genetic algorithm [7], and
neural networks [8]. In this paper, we aim to contribute to this effort by examining
the potential of a data mining method, namely the Naive Bayes (NB) classification,
for providing CA transition rules. NB is a widely used classification technique due
to its simplicity and good performance on a wide range of problems [9]. The
classification is based on Bayes Theorem and the assumption that input variables are
conditionally independent given the class variable.

We present a CA modeling methodology that is based on data mining elicited rules
and test it on a case study of modeling an invasive species. The main characteristics
of the developed methodology are the use of NB classification for providing CA
transition rules, and the visualization method, based on using a nomogram, to give
insight into the classifier and detect intraregional pattern differences. The
methodology aims at a generic tool that is applicable in different fields and capable
of revealing hidden patterns through the strength of spatial data mining techniques
[10]. The methodology is illustrated in the case study. Finally, we discuss the use of
free and open source software (FOSS) in the methodology and CA modeling in
general.

The methodology

The methodology employs a NB classifier to mine CA transition rules and predict
the next generation of the automata. A simple NB classifier is presented in Figure 1;
the probabilities of an object to belong to each of the possible classes are computed
by Bayes Theorem given a number of attributes, then the object is assigned to the
class with the maximum probability.

The exercise of determining the next generation of CA can be depicted as a NB
problem; for each run of the CA, we attempt to predict the state (class) of each cell
(instance) in the next time step (t+1) given the composition and configuration of its
neighbors as well as a number of auxiliary variables, if any. If we let the cell state in
the next time step (Si+1) be the response or class variable, and the states of its
neighbors in the current time step and, if applicable, the auxiliary variables be the
independent variables (or attributes), then we can compose a spatiotemporal NB
network as shown in Figure 2. In this case, the “class” and “instance” in the data
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mining jargon are, respectively, equivalent to the “state” and “cell” in the CA, and
they are used interchangeably throughout this paper.

TN

PEIEPH) [ (o )
P(x) / A
[ % \ [ % | [ % |

P(HIX) =

Figure 1: Naive Bayes classifier, the simplest form of Bayesian networks

The spatiotemporal NB network in Figure 2 is an example of a case where a 5x5
extended Moore neighborhood is adopted. The principle can be applied to any
neighborhood size, i.e., 3x3, 7x7, 9x9, etc. It is worth noting that cells within the
neighborhood in Figure 2 are labeled to indicate the ring to which they belong. That
is, the cell in question is labeled 0, cells adjacent to it (the original eight Moore
neighbors) are labeled 100 through 107, cells in the one-step outer ring are denoted
200 through 215, and so forth. This is important for exploring the effect of spatial
configuration (or allocation) and we use it later to examine and visualize the
influence (weight) of different cells, within the analyzed neighborhood, on
predicting the future of the cell in question. This approach allows accounting for the
configuration of possible states around the cell in question, rather than merely the
composition, in predicting its state in the next generation.

A sample set of instances is needed to build a NB classifier. The quality of the
classifier depends on the representativeness of the sample set. As the classifier deals
with spatial data, the sample should be spatially stratified, i.e. samples should be
well spread over the geographic space of the region. The sample should also be
stratified with respect to the class variable in order to obtain as good priors as
possible for the NB classification. Finally, should auxiliary variables be
incorporated, a sample is drawn from their multivariate distribution such that, for
each variable, the sample is marginally maximally stratified. Minasny and
McBratney [11] introduced a conditional LHS algorithm (cLHS) that samples
variables from their multivariate distributions as above mentioned and, in the same
time, ensures the occurrence of the value combinations in the real world. Their
Matlab code was ported to Octave for this study. The cLHS function receives a table
of all instances within the region and returns 10% as a sample.

Classifiers can be visualized using nomograms to provide a summary of the
influence of different variables on the classification [12]. Mozina et al. [12]
introduced a NB nomogram where the variables” domains are measured upon a scale
that indicates their contribution to the prediction, with regard to a certain class, as
point scores. The prediction is then made by summing the scores and finding the
corresponding probability and, thus, class. For the spatial case of this study, we
further map the scores of different attributes (states of cells in the neighborhood)
back to the neighborhood window. That is, for each cell within the neighborhood
window, the method illustrates the effect of that cell being “live” at time t on the
probability of the cell in question to be “live” at time t+1.
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Figure 2: Spatiotemporal NB network; states of cells within the neighborhood window as well
as the state of the cell in question in the initial time step form the attributes of the classifier that
aims to predict the class of the cell in question in the next time step (i.e. assign it to one of the
possible states)

Implementation of the method

The algorithm implementing the methodology is presented in Figure 3. First input
grids and parameters are read in and checked. The potential of the NB classification
for the problem at hand is tested next. The potential is tested using a 10-fold cross-
validation procedure, where data is split into 10 equally sized subsets each of which
is used for testing a classifier trained on the remaining subsets. The evaluation result
(averaged over the ten runs) is reported to the user, who may choose to halt the
execution of the algorithm if low accuracy is reported. A sample is then drawn from
the data to build a NB classifier. The algorithm then continues to run the required
CA generations.

The model can run in both probabilistic and stochastic modes. In case the
probabilistic mode is chosen, the classification is obtained directly from the NB
classifier which assigns an instance to the class that maximizes the posterior
probability. For the stochastic model, Monte Carlo simulation is run in which the
next generation is determined by obtaining the probability of each instance to belong
to class “1” (denoting a live cell) from the classifier, drawing a random number,
assigning a state according to the drawn number, and moving to the next generation.
This is done repeatedly for a number of iterations.

Free and open source software was used in the model development. The model itself
was written in Python and Numpy was used for numerical computations. Geospatial
Data Abstraction Library (GDAL) and its Python bindings were used for handling
input and output of raster grids. Orange Data Mining and Machine Learning Suite
was used for the data mining part. Orange provides a range of data mining
techniques, including the Naive Bayes classification and classifier visualization
through nomograms [12]. Training samples were obtained by conditional Latin
Hypercube Sampling implemented in Matlab [11] and ported to Octave.

82 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



Altartouri and Jolma, Mining cellular automata rules

Begin Input arids . Classifier evaluation Evaluation
g put g (k-fold cross-validation) results
Stratified sampling (cLHS)
Training classifier
'
Stachastic Model Probabilistic
I mode?
44 Initial generation Initial generation
-| Generation @ t Generation @ t
I ) I
Create neig. Stack Create neig. Stack
(plus auxiliary (plus auxiliary
variables, if any) variables, if any)
1 Create table of Create table of
Iteration ++ instances instances
G tion ++ Classify instances . .
eneration Classify instances Generation ++
| No - (get class
- (get class)
Last probability vector)
¥
= iteration " I No 1 No
? Draw a random Last
¥ Lastr number and assign generation Yes
Yes genegatmn a class (state) PO
. ! +
Generation @ t+1 Generation @ t+1
Summarize iterations
Expected

generations

End

Figure 3: Model flowchart

Case study and data set

The developed model is applied on the case of the common reed (Phragmites
australis) expansion on the Finnish shores. The common reed has taken the Finnish
shores in many places in the last decades causing habitat changes, influencing a
number of species, and lowering the value of the impacted coastal and archipelago
properties [13, 14]. A model capable of predicting future distributions of the reed
beds is needed for the planning and management of the area.

Reed coverage maps from Svartbéck (Purola), an approximately 50 km? site near the
outlet of River Kymijoki at Ruotsinpyhtad, were available from years 2003 and 2006
(Figure 4). The area is shallow inner archipelago, with average water depth of 7.5 m.
The area represents well the Finnish coast with parts of it influenced by a river and
others far away from any river mouths. The openness of the shores within the area
varies considerably.

The model spatial resolution was set to 4 m, which is one-third of the mean diameter
of the maximum circles inscribed in patches that changed in a three-year-period
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(2003-2006). The model was initialized with the coverage of 2003 and run for three
generations (years) to predict the cover of 2006.The model was run stochastically for
1000 iterations to simulate the reed dynamics in the study area.

The study area was divided into three subareas (Figure 5) in order to examine the
potential of the NB classifier and its nomogram to capture particularities of different
subareas. The model was run for the area as a whole using a classifier trained on
samples from all parts of it. In order to make comparisons, the model was then run
separately for each subarea using a classifier trained on a sample from that area.
Classifiers from the whole area and each subarea were evaluated using 10-fold
cross-validation. Model outputs using different classifiers were compared by the
accuracy of the predicted reed map of 2006. The accuracy is given by the proportion
of cells correctly classified. For our case, the output of the classifier falls within one
of four groups as shown in Table 1. Denoting reed-occupied cells by “1” and reed-
free cells by “0”, the fraction of cells correctly classified as “1” (i.e. P(Class = 1)
>= 50%) and the fraction of cells correctly classified as “0” (i.e. P(Class = 1) <
50%) are, respectively, referred to as the “true positive” and the “true negative”
rates. The other two proportions in Table 1 are the error rates referring to cells
assigned to one of the classes while observed otherwise.

Figure 4: Location of study area and its reed coverage in 2003 and 2006
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Figure 5: Subareas within the study area for which intraregional pattern differences are
examined
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Results

The NB classifiers for different subareas are visualized in Figure 6. Figure 6 (a)
shows the nomograms of each classifier. We can observe different patterns of how
each attribute influences the probability of the cell in question to be “live” in the
next time step. Figure 6 (b) presents the relative importance of the attribute mapped
back to its corresponding location in the neighborhood window. The latter figure
conveys spatial patterns in the influence. For subarea 1, the influence is as expected,
that is, the closer the cell the more influential. In the other subareas the effect is
skewed toward the west and north (subarea 2) and the south and east (subarea 3).
Table 2 lists the results of the 10-fold cross-validation for the NB classifiers
obtained for different regions (subareas). The table presents the accuracy of each
classifier, averaged over the 10 folds. The overall accuracy is above 80%. Classifiers
are recording higher accuracies when they are region-specific.

The actual and predicted reed maps of 2006 are shown in Figure 7. The accuracies
and errors of the predicted map are presented in Table 1. The accuracy was further
investigated for the two possibilities of state change, i.e. the accuracy of predicting
cells having the state “1” after being “0” (denoted by “0->1”), and vice versa
(denoted by “1->0”). The model failed to predict any of the “1->0” cases. For the
case of “0>1” the accuracies are listed in Table 3. It can be noticed that, for subarea
2 and 3, the accuracy is enhanced by applying models with region-specific
classifiers.

A stochastic model with 1000 iterations elapsed 9h25m. With a 4 m cell, the raster
grid of the area consists of 1407 columns and 1390 rows. The neighborhood window
chosen was 9x9. This results in a table of instance with 81 attributes (plus the class
attribute) and approximately 2 million instances. The model run time depends
greatly on the number of cells within the area and, to a lesser degree, the number of
attributes. The model was run under Ubuntu 11.10 OS in a machine with 16 GB
RAM and 4 processors at 3.2 GHz each.
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Figure 6: Visualization of classifiers for each subarea; (a) nomograms reflecting the influence
of each attribute (cell) on the probability of the class variable (cell state in the next time step) to
be classified as “1”; and (b) relative influence of the attributes mapped to their spatial positions

in the neighborhood window, with darker cells being more influential

Table 1: Classifier accuracy and error rates

Observed class: “1”

Observed class: “0”

. e True positive False positive (error 1)
Predicted class: “1 [0.779] [0.063]

, wnn | False negative (error 2) True negative
Predicted class: “0 [0.221] [0.937]
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Table 2: Average accuracies of classifiers from different geographic areas

10-fold cross-validation

Area

(averaged)
Whole study area 0.823
Subarea 1 0.865
Subarea 2 0.871
Subarea 3 0.983

Table 3: The accuracy of predicting the “0->1” case using generic versus region-specific
classifiers for each subarea

Model applying Model applying

Area - o . e A
generic classifier site-specific classifier
Subarea 1 0.572 0.529
Subarea 2 0.459 0.528
Subarea 3 0.392 0.454
T, SER
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Figure 7: Actual versus predicted reed coverage of 2006

Discussion

The method shows high potential of detecting intraregional differences within the
study area. The nomograms and their extended spatial representation reveal hidden
patterns of the process manifestation in different locations. This can enhance our
knowledge of the phenomenon in question. For our case, the unexpected patterns of
neighborhood influence in subarea 2 and 3 might be due to region-specific currents,
sources of nutrients, or other external factors. With further investigation, the causes
can be verified and incorporated in the model to enhance its predictability. Adopting
locally trained classifiers yielded higher model accuracy as listed in Table 3. The
presented method can help overcome the concern of a single set of rules for large
areas [4] by capturing intraregional pattern differences and adopting region-specific
rules. The method exploits the available data maximally by analyzing not only the
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effect of the composition (quantity) of various categories within the neighborhood,
but also the effect of their configuration (allocation).

While the overall accuracy of the NB classifiers and the CA model is good, the
ability of the model to precisely predict the state change cases, namely “0->1” and
“1->07, is still low. For the case of “0—>17, the prediction capability of the model,
which was initially low, was enhanced by adopting region-specific classifiers for
subareas 2 and 3. This is due to the particularities of those sites revealed by the
nomogram and the extended spatial representation of the neighborhood influence
(Figure 6). For region 1, however, the predictability of the generic classifier was
higher. This might be due to the large area of region 1 which accounts for 70% of
the whole study area. Although specific for their own regions, instances from region
2 and 3 are generally in line with those from region 1, and therefore incorporating
them in building the classifier increases the training sample size and, consequently,
enhances the classifier’s performance.

The model failed to detect the “1->0” case altogether. The reason can be the fact that
the expansion of reeds, rather than disappearance, was the dominant trend between
2003 and 2006, accounting for two-thirds of the state change cases. This can be
solved by training separate classifiers for the expansion (i.e. “0>1”) and
disappearance (i.e. “1->0”) cases. Another cause can be that the disappearance of
reeds is mainly occurring next to the shoreline and is probably due to manual
removal. While the CA neighborhood effect reflects on the reed expansion
mechanism (which proliferate mainly by rhizomes), it cannot predict results of
human intervention such as the manual removal.

The performance of the model can be considerably enhanced by incorporating
auxiliary variables, explanatory to the phenomenon, in the classifier or in posterior
steps. For the case of reed expansion, those might include the water depth, the
sediment type, the nutrient load, and the relative sea openness. The neighborhood
influence in many spatial processes, although highly influential, cannot solely
explain the process. However, auxiliary variables were not incorporated since the
purpose of this work was to examine the potential of data mining techniques to
provide CA transition rules, with no emphases on the case study. From this
perspective, having reached accuracy over 50% by analyzing merely two maps of
reed coverage from different years suggests that the proposed methodology is
capable of capturing patterns of the process modeled and providing CA rules that
are, when necessary, region-specific.

Both probabilistic and stochastic modes are implemented in the algorithm. The NB
classifier is acknowledged for its high performance in predicting the class of an
instance [15, 16]. Running the model in a probabilistic mode, thus, exploits the
strong feature of the NB classifier, while running a stochastic model allows
indicating the uncertainty of the prediction by the probability distributions from
different iterations.

Running a stochastic model with 1000 iterations elapsed about 10 hours. A
probabilistic model elapses less than 10 minutes. Taking into account the heavy
computational load, the model execution is rather fast. For each iteration, arrays of
cells’ and their neighbors’ states are stacked. The number of arrays stacked grows
exponentially as the neighborhood size grows; choosing a 9x9 neighborhood
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window, for instance, results in a stack of 81 arrays. These arrays are then
transposed and flattened to obtain a table of instances readable by the classifier. The
effective masking and indexing functions of Numpy help optimizing the model by
keeping track of unmasked cells, often faced when modeling natural and urban
processes. This makes it possible to avoid classifying irrelevant instances and, in the
same time, maintain the spatial position of instances, thus increasing the model
efficiency.

The use of FOSS and libraries allows the code modification and reuse by other
researchers for other applications. The ability to set different sizes of cells and
neighborhood windows and the ability to incorporate any number or combination of
variables gives flexibility to the model. Combined with the algorithm efficiency, this
helps initializing multiple models with different settings and variables for the
purpose of finding the appropriate choice of parameters for the process being
modeled.

Further elaboration on a number of aspects would enhance the methodology and the
algorithm. This includes testing the methodology for multi categorical applications,
building classifiers for each transition case, adding posterior refinement steps
(application dependent), and implementing automatic detection and handling of
intraregional differences in the process patterns.
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Abstract

This paper has two objectives. The first one is to examine the performance of a set
of spatial models built to define functional urban regions. More specifically, the
models are tested using recent census data. In the second objective, an extension of
the modeling approach is tested. Instead of predicting density values to later classify
them in quadrants of the Moran’s scatterplot, the new models directly predict the
quadrants. This new approach seems to perform better. In summary, the findings
obtained with this study suggest or even confirm the value of spatial analysis
techniques as a promising approach to define and monitor FURs. This comes along
especially as an alternative approach where more specific data is not available, but
usually easily accessible census data may be used for that end.

Introduction

Large urbanized areas formed by several municipalities bring particular challenges
to urban managers and planners. On the one hand, the administrative limits of those
conurbations go well beyond the limits of the individual cities that form them. On
the other hand, they are often not large enough to match the boundaries of the
superior administrative subdivisions, i.e., states or provinces. Therefore, one of the
alternatives to deal with that administrative problem is the definition of the so-called
Metropolitan Regions (MRs), or Functional Urban Regions (FURs). Several
methods have been developed to define FURs. But given the inherent complexity of
the concept, it is not always an easy task (for a recent literature review on this topic,
see [1] and [2]).

In short, one of the methods for defining FURs is based on commuting flows
between regions, as observed in Europe [3] and in the United States [4]. Some
authors, however, argue that the commuting intensity itself is not able to show the
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degree of economic integration between a metropolitan center and its hinterland
(e.g., [5] to [9]).

The lack of proper data is an issue regarding the application of commuting flows-
based methods. Some alternative approaches have been presented for proxying
commuting data, as suggested by Coombes [10], but they still rely on data that are
usually unavailable in developing countries, such as the distribution of jobs.
However, the author also lists feasible alternatives, such as using roads or service
networks like bus services as a proxy for data on actual patterns of interaction.

In any case, these approaches may still not be viable regarding the need for specific
data. Therefore, the authors of the Office of Management and Budget [11] defended
another alternative for defining metropolitan areas based on population density
values, since it is expected to be available in most census datasets. The authors
stated that "residential population density can serve as a surrogate for other measures
of activity in the absence of nationally consistent and reliable datasets describing all
daily and weekly movements of individuals".

The use of population density for defining FURs can be analyzed in many different
ways, though. This was shown by Ramos and Rodrigues da Silva [12] and [13],
Ramos et al. [14] and Manzato et al. [15], who have explored the use of the attribute
with spatial analyses tools, such as spatial statistics and spatial modeling. More
specifically, the spatial statistics concepts used Exploratory Spatial Data Analysis
(ESDA) techniques [16], and the spatial modeling was based on principles of
Cellular Automata - CA (e.g., [17] to [22]). Also, Pereira and Rodrigues da Silva
[23] investigated another technique based on cluster analysis.

While those applications of spatial analyses using population density led to
interesting and promising results for the definition of FURs, Manzato and Rodrigues
da Silva [1] extended the approach with the inclusion of an infrastructure supply
index. Their assumption claimed that in the absence of traffic flow data as one of the
possible methods to define FURs, a proxy measure that quantifies the level of
transportation infrastructure supply might relatively well replicate the actual traffic
flows. Thus, the definition of FURs could eventually rely on the level of
transportation infrastructure supply or, alternatively, on indexes that represent the
supply level in each municipality. The findings obtained by these authors and later
on by Rodrigues da Silva et al. [2] suggested that the use of a transportation
infrastructure supply index combined with population density within a spatial
analysis-based approach is a promising alternative to define FURs.

Given the above, the objective of this study is twofold. First, with the recent
availability of the demographic census carried out in 2010, we tested the models
developed by Manzato and Rodrigues da Silva [1] in the sense of validating them
with new data. Second, we also explore an extension of their models, considering a
simpler model specification. It consists of using essentially the same model
structures proposed before by these authors, but taking into account as model
attributes only the quadrants of the Moran’s scatterplot obtained for both population
density and the index of infrastructure supply.

This paper is structured as follows. Next section presents the methodology proposed,
followed by the results obtained. At the end, some concluding remarks are drawn
and the bibliographic references are listed.
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Methodology

The present study followed the methodology proposed by Manzato and Rodrigues
da Silva [1]. They built spatial models to define FURs using ESDA techniques along
with principles of CA. In the case of ESDA, zones are classified regarding a given
attribute value in relation to the overall average value and also in relation to the
average value of the adjacent zones. The results, which can be represented in four
quadrants of the Moran’s scatterplot and also in maps (the so-called Box Maps), can
be classified as follows:

1. High-High (HH): in that quadrant are represented the zones with positive value
for the zone and positive average value for contiguous neighbors. Positive values
are always above the overall average value.

2. Low-Low (LL): in that quadrant are represented the zones with negative value
for the zone and negative average value for contiguous neighbors. Negative
values are always below the overall average value.

3. Low-High (LH): in that quadrant are represented the zones with negative value
for the zone and positive average value for contiguous neighbors.

4. High-Low (HL): in that quadrant are represented the zones with positive value
for the zone and negative average value for contiguous neighbors.

Two basic attributes were used: population density and an index of infrastructure
supply, as shown in Equation 1. This index refers to an area under the influence of a
particular transportation system (in this case, the highway network) and it is
composed by weighted buffers around that system.

o, Z1OA
A (@)

where:

IC index of infrastructure supply coverage for zone x

X
y(i) function that determines the weight of each buffer, such as y(i) € [0,1]

A1 area of each buffer comprised in a zone x
Ax area of zone x
n number of buffers.

Zone x mentioned here is related to the municipality’s official administrative
boundaries, which comprise our units of observation and where such attributes were
calculated at. The quadrants of Moran’s scatterplot were also obtained for both
population density (PD,) and the index of infrastructure supply (IC,), respectively
referred to as QPD, and QIC,. Along with these four attributes, given this CA-based
spatial modeling approach, additional attributes were included. They comprised the
average value of the population density in adjacent municipalities (PD;) and the
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number of adjacent municipalities in each quadrant of the Moran’s scatterplot
obtained for PDy (e.g., NHHy pp, NLLypp, NLH, pp, and nHL, pp). We have adopted a
binary measure of adjacency (neighbor / not neighbor). In sum, nine attributes are
defined for such spatial models.

Following Manzato and Rodrigues da Silva [1], two basic model structures were
applied. The first is called “3 IN 1 OUT”, where input data reflect three periods of
time, apart “X” years from one another, and the output data is one time-step later. For
example, if the output data is “t”, and “X” is equal to ten years, the input data must
be “t—30”, “t—20” and “t— 10" years. The second model structure is called
“T, T + 10”. Although it apparently has only one period of time for the input data
and another one for the output, this structure was constructed in such a way that the
information about two or more periods of time is also considered in the model. The
data from distinct periods of time are placed on the top of each other, as if they were
in the same column of a spreadsheet. Thus, if the first model structure has “w”
entries (or municipalities, in our case), the second model structure has “3 x w”
entries. In other words, the second kind of model has more cases in the dataset. On
the other hand, it ignores long-term effects that can only be captured if the same
entry is seen in several time steps at once, as it is the case of the first structure.
Figure 1 exemplifies the model structures described above.

-30 -20
(1960) (1970)
IN IN IN ouT

-20 | -10
-30 || #-20]|#10 t IN - our|#
(1960) (1970 (1980) (1990) (1970) (1980)

MODEL “3 IN 1 OUT”
-10 t
(1980) (1990)

MODEL “T, T+10”

Figure 1: Overview of the proposed model structures

Considering both model structures along with the attributes defined, Manzato and
Rodrigues da Silva [1] built a set of four models divided into two groups. We can
observe that population density is the basic element among the several attributes
used to represent land-use. Therefore, a first group of models only took into account
these attributes. Table 1 specifies the model structure and the attributes included in
this group. As the interest was also in the influence of the transport infrastructure
supply on such modeling phenomenon, a second group of models included the index
of infrastructure supply (IC,), as a way to capture some effects of the transportation-
land use relationship on the occupation of the territory along time. The index was
not, however, included using the respective values across the years analyzed.
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Instead, a variation across time steps was considered. For example, in the model
structure “3 IN 1 OUT”, a difference between periods “t—10” and “t—30” was
calculated. For the model structure “T, T + 10” on the other hand, the difference
regarded two consecutive years across the respective pairs of periods analyzed. In
any case, that variation of the index was normalized between 0.1 and 0.9 to avoid
null or extremely high values, what could produce some inconsistencies during the
simulations. A summary of the proposed models, with the distinct structures and
attributes, is presented in Table 1.

Table 1: Structures and variables used in the distinct models proposed

Model Structure Basic attributes Input attributes Output attribute
1 3IN10UT Population PD.; QPD;; PDj;
densit NHH,pp; NLLxpD; PDx
2 T, T+10 Y NLHypp; NHLypo
3 3IN10UT Population density PDy; QPDy; PDy;
+ NHH,pp; NLLypD; PDy
4 T,T+10 Infrastructure supply  nNLHypp; NHLpo; ICy

The data used to calculate those attributes were obtained essentially from two
sources: the demographic censuses carried out by the Brazilian Institute of
Geography and Statistics, and the State Highway Department. The former provided
initially the population data in the years 1960, 1970, 1980, 1991 (here considered as
1990), and 2000. This same source also provided a vector geographic database with
the municipalities’ boundaries. The latter provided maps of the state highway
network for the years 1960, 1970, 1980, 1990, and 2000.

Given the data available when Manzato and Rodrigues da Silva [1] carried out their
study, the spatial modeling process comprised three phases: calibration, validation
and forecasting. First, in the calibration phase, they used the 1960, 1970, 1980, and
1990 datasets. In doing so, they obtained the weights and the mathematical functions
of the artificial neural networks used to compose the spatial models. In the second
phase, they applied the 1970, 1980, 1990, and 2000 datasets for the validation of
these models, comparing the predicted results with the real values. These two phases
are essential in the modeling process. It is also important to pay attention to the
periods taken into account in both phases, as the year 2000 is not considered in the
calibration phase because it will be used in the validation phase to test the models.
Conversely, producing estimates for periods before the year 1990 would not produce
significant results, because such periods were used as outputs for calibrating the
models.

The results of the third phase, when the authors forecasted values for a future time
step, are of specific interest in this study. In that stage, Manzato and Rodrigues da
Silva [1] extended their analyses for estimating values for the year 2010, using the
1980, 1990, and 2000 datasets as input data. Recently, the results of the 2010
demographic census became available [24]. Therefore, using essentially the same
models developed before, the estimates of the forecasting phase for 2010 could now
be tested with the observed data for the same year. This allowed another evaluation
of the set of models proposed.
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Notwithstanding this model validation, an extension in the set of models was also
tested. These additional models follow the same structures described before (i.e.,
“3IN 10UT” and “T, T + 10”), but the difference regards the attributes considered
as inputs and the output. More specifically, these models are built only using the
quadrants of the Moran’s scatterplot obtained for both population density and the
index of infrastructure supply as inputs, e.g., respectively, QPD, and QIC,. The
output is the quadrants of the Moran’s scatterplot for population density (QPD,).
Table 2 summarizes the specification of these additional models.

Table 2: Specification of the additional models proposed

Model Structure Basic attribute Input attributes Output attribute
5 3INIOUT o on censity
. QPD;; QIC, QPD,
6 T, T+10
Infrastructure supply
Results

The results of models 1 to 6 are presented in Table 3, which shows the partial and
total percentages of correct quadrant estimations. This measure is given by the
comparison of the observed values in 2010 with the values estimated by the models
in the same year. It is important to emphasize that models 1 to 4 estimate population
densities and models 5 and 6 directly estimate the quadrants. Therefore, the
population densities estimated with models 1 to 4 were subsequently classified in
quadrants so that the results became comparable.

Considering models 1 and 2, which have earlier population density values as the
basic input attribute, the performance of model 2 appears to be better than model 1.
This can be observed by the total percentage of correct quadrant estimations, which
is equal to 93 %. The partial results are also higher for model 2, except in quadrant
LH. However, given the significant difference in quadrants LL and HL, and in the
totals, model 2 performs better.

Analyzing models 3 and 4, which include the index of transportation infrastructure
supply, their performances seem to be better than models 1 and 2. The additional
attribute indeed contributes to the improvement of the models and this is in line with
the original findings obtained by Manzato and Rodrigues da Silva [1]. In a direct
comparison of models 3 and 4, although the totals are the same, model 4 has a
higher percentage of partial correct estimations in quadrants HH, LH and HL.
Therefore, this model seems to be better than model 3.

Looking at the results for models 5 and 6, which are the additional models proposed
here, their performances were even better than the previous models. This is
especially the case of model 6, which results in the highest percentages of correct
quadrant estimations.

Despite the above, it is important to evaluate these findings in terms of the
distribution of the errors produced by such model estimations. To this end, we
selected the models that performed better within their specifications. That is, the best
models between 1 and 2, 3 and 4, and 5 and 6, respectively. From the above, models
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2, 4, and 6 had the best performances. Noticeably, they all follow a “T, T + 10”
structure.

Considering the models that estimate population density (i.e., models 2 and 4),
Map 1 shows the representation of the population density over the territory for
observed and estimated values. It is important to emphasize that Map 1 presents the
actual values of population density (both observed and estimated) and not the
quadrants. Model 2 is able to provide good estimates within the official metropolitan
regions (shown by the areas delimited by a white line), but produces errors outside
those regions. On the other hand, model 4 provides good estimates outside the
official metropolitan regions, but does not perform well within those regions.

Table 3: Partial and total results of the percentages of
correct quadrant estimations in 2010 for models 1 to 6

Model HH LL LH HL Total
1 91 % 86 % 88 % 75% 87 %
2 91 % 95 % 1% 94 % 93 %
3 85% 99 % 1% 69 % 96 %
4 91 % 97 % 922 % 75 % 96 %
5
6

90 % 99 % 79 % 88 % 97 %
91 % 99 % 96 % 88 % 98 %

Also, the results of these models can be represented in terms of the quadrants, as
shown in Maps 2 and 3. A visual and direct comparison can be made by looking at
the two smaller figures on the top of Maps 2 and 3. However, most importantly, we
are interested in the distribution of the errors. To this end, we classified the
municipalities whose resulting quadrants obtained from the estimated population
density deviated from the quadrants obtained from the observed population density
values. The legends elaborated for Maps 2, 3 and 4 show the observed occurrences
“should be” in contrast with what the estimated occurrences “became”. When we
analyze the distribution of such occurrences over the territory, it became evident that
model 4 produces fewer errors in comparison to model 2.

Finally, Map 4 presents the distribution of the errors produced by model 6. It was
argued before that the results of this model were the best, given by the comparison
of the percentages of correct quadrant estimations. When looking at the distribution
of the errors over the territory, this model produces even fewer incorrect estimates in
comparison to both models 2 and 4.
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Map 1: Observed and estimated values of population density in 2010
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Map 2: Quadrants of observed and estimated values of population density in 2010 and
distribution of incorrect quadrant predictions resulting from the application of model 2
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Map 3: Quadrants of observed and estimated values of population density in 2010 and
distribution of incorrect quadrant predictions resulting from the application of model 4
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Map 4: Quadrants of observed and estimated values of population density in 2010 and
distribution of incorrect quadrant predictions resulting from the application of model 6

Conclusions

This paper had two objectives. The first one was to examine the performance of a set
of spatial models built to define functional urban regions. More specifically, the
models developed by Manzato and Rodrigues da Silva [1] were tested using recent
census data. In the second objective, an extension of the modeling approach was
tested. Instead of predicting density values to later classify them in quadrants of the
Moran’s scatterplot, the new models directly predict the quadrants. The main
findings of this study are summarized hereafter.

First, considering a model structure where the population density is estimated, the
analysis suggests that models 2 and 4 have the best performances, although they
provide different results. Model 2 has similar density distributions when compared
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to the actual data (i.e., in 2010) in the official metropolitan regions. However,
outside those regions, several density values are not correctly classified using model
2. On the other hand, the predictions of model 4 are not good within and close to the
official metropolitan regions, but the model performs better than model 2 in the rest
of the state.

Second, when looking at the results provided by the original models in terms of
quadrants of the Moran’s scatterplot, the performances of models 2 and 4 are
significantly improved (Maps 2 and 3). In this particular case, model 4 performs
better than model 2. In both cases, however, most incorrect predictions are located
around the official metropolitan regions.

Finally, when analyzing the performance of the additional models that were based
only on the quadrants of the Moran’s scatterplot, the findings suggest that these
models (5 and 6) perform better than the previous ones (models 1 to 4). This was
shown in the example of model 6 (see Map 4 and Table 3). While model 4 provides
correct estimates for 96 % of the cases (municipalities), model 6 predicts 98 % of
the total number of cases as correct. In addition, model 6 provides much more
uniform predictions within the quadrants. Remarkably, all those advantages come
along with a simpler model structure.

In summary, the findings obtained with this study suggest or even may confirm the
value of spatial analysis techniques as a promising approach to define and monitor
FURSs. This comes along especially as an alternative approach where more specific
data is not available, but usually easily accessible census data may be used for that
end.
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Abstract

The model structure of a land use change Cellular Automaton (CA), i.e. its set
of transition rules, is often identified rather arbitrarily. We propose a more
objective approach that selects the model structure from a set of candidate structures
using observational data of land use. This is done in a Bayesian framework
that sequentially assimilates observational data into the CA, where the model
structure is defined as a probability distribution of transition rules. The advantage of
the approach is that it combines expert knowledge and observational data in
identifying the transition rules, taking into account the uncertainty in the
observational data. The approach is evaluated in a case study of a land use change
model simulating bioenergy cropland expansion in Brazil.

Introduction

Land use change models simulate dynamic processes and interactions that are
complex and are rarely fully understood [1]. Most land use change models, apart
from agent based models, are grounded on some form of constrained Cellular
Automaton (CA). A constrained CA can be defined as a discrete cell space with a set
of potential cell states and a set of transition rules that control the state of each cell
constrained by the number of cells required for each land use type (the demand) [2].
A wide range of individual theories exists to describe the land use system, which
gives rise to a variety of transition rules being used [3].

The model structure of a land use change CA, i.e. the set of transition rules, is often
identified somewnhat arbitrarily, mainly using expert knowledge [4, 5]. In other
cases, extensions of standard statistical methods are used, usually some type of
regression on a land use map for a single time step, separate from the model
itself [6-8]. This comes with the perils of finding rules valid for only a particular
point in time, missing feedback effects, or detecting only a single effective
combination of rules, while various ones exist. Therefore, such methods are not
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oriented towards complexity [9]. Some use more complexity-oriented methods to
identify model structure, like neural networks [10, 11], Bayesian networks [12], and
particle swarm optimization [13]. A problem with all these approaches is,
however, that they do not take into account observation uncertainty [14].

In addition to model structure identification, i.e. defining which processes should be
included, model calibration, i.e. parameterization of these processes, is required.
Yet, calibration could be considered pointless if the model structure is incorrect. To
overcome this problem, we propose a method to simultaneously identify model
structure and calibrate parameters of a land use change model using observational
data.

Key requirements are to: 1) include prior knowledge about the model structure and
parameters; 2) use a sound statistical framework that is capable of reconciling model
uncertainty and observation uncertainty; 3) be able to utilize observations not
only of the cell state (land use), but also of other variables or derived spatial pattern
characteristics, e.g. patch size, zonal summary statistics, or connectivity, because
these help to identify the underlying processes [15]; and 4) integrate model running
and model structure identification to take into account temporal effects.

Data assimilation techniques have the potential to fulfil these requirements, because
they sequentially update the model rules and parameters at time steps when
observations are available. Most of these techniques rely on Bayes’ theorem and
thus have a sound statistical basis. They are increasingly being used to
calibrate spatio-temporal models in a wide range of different fields in the
environmental sciences, such as oceanography [16], hydrology [17], and
atmospheric transport [18], but have, to our knowledge, not yet been applied for
model structure identification and are new in the land use change field [19, 20].
Here, the potential of data assimilation for model structure identification and
calibration of a land use change CA is evaluated by means of a case study of
modelling the expansion of sugar cane fields in the Sdo Paulo state in Brazil. This
is relevant in view of the current debate on the sustainability of bioenergy from
dedicated crops when land usechange is taken into account [21, 22].

A brief explanation of data assimilation is provided in the next section. The
subsequent section outlines the case study setting, model set up with potential
structures (prior information) and the observational data. This is followed by
preliminary results and a discussion and conclusion section.

General framework
A CA, with the state variable(s) z; and initial state z,, can be defined as:

Z; = f(Z,_1, i, pp). foreachr=1,2, ... T ()

In equation 1, f; is the set of transition rules at time step t that simulates the system
of, in this case, land use change. The vector i, represents all inputs and
boundary conditions and p, contains the parameters. In a stochastic model, the
uncertain parts of the system are described stochastically. So, ft is a probability
distribution of possible transition rules and it and pt the probability distributions of
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the inputs, boundary conditions and parameters. Together, they determine shape of
the resulting probability distribution of the state variable, referred to as p(zt).

Bayes’ rule to updates a probability distribution of a variable, when evidence, i.e. an
observation, of this variable arrives. So, for the time steps at which observational
data are available the following equation is evaluated.

ploelze) + P(Zr)> for each 7 2)
p(or)

p(zlo,) =

In equation 2, p(oy) is the probability distribution of the observations, accordingly
taking into account the uncertainty in these observations. p(ot|zc) is the joint
probability density of the observations at t given the model state, which can be seen
as the likelihood that the observations occur given the model. The posterior
probability p(zt|ot) is the probability distribution of the state variable z, adjusted to

the obseravtions.

Numerically, equation 1 is often solved using Monte Carlo analysis, which
represents probability distributions by a number of realizations. A numerical
solution of equation 2 is the particle filter, a data assimilation technique that
filters these realizations, also called particles, sequentially. At each time step for
which observational data are available it uses Bayes’ theorem to assess the
probability that a certain particle and the observed data can be considered equal
[23]. Herein, the following steps are taken:

1. A number of N realizations are drawn from the initial probability distributions
of transition rules, inputs, boundary conditions and parameters, resulting in a
total number of N particles.

2. For all N particles the land use change model is run up to the next observation
moment, i.e. the next moment for which observational data are available.

3. The posterior probability, also called weight, that the modelled state at that
moment is correct, given the observations with their uncertainty, is calculated for
each of the particles.

4. Using these weights, N particles are drawn to be progressed to the next
observation moment. This procedure causes particles with a high weight to be
copied (drawn several times) and particles with a low weight to be removed (never
drawn).

5. Steps 2 to 4 are repeated until all filter moments are completed and the model
has reached the final time step.

Steps 1 and 2 involve the Monte Carlo simulation, step 3 is achieved by solving
Bayes’ theorem sequentially:

. _ pfoclzd)<p(zh) . L (3)
P(Zfl()[) = m foreachi=1,2,...,N

In equation 3, p(z}) is the prior probability of model realization i, which is

alwaysequal to 1/N because the same number of particles is drawn after each filter
moment (step 4). If the observations are not of the state variable, but of a derived
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summary statistic, for example relative proportions of land use in a subarea like
sometimes found in census data, the model state has to be converted to that
measure before filtering. In equation 3, p(zi|odis the posterior probability or
weight of particle i and p(o|z) is the probability of the observations given
particle i. Under the assumption that the observation error has a Gaussian
distribution, the latter can be defined as:

1T
p(oz) = 6’_1/2[%_2%] REI[OE_ZH, for each ¢ “
In equation 4, Ry is the covariance matrix of the observation error and T indicates
matrix transposition.
Going through steps 1 to 5 the procedure ‘filters’ because many particles do not
match the observations, receive low weights, and are thus not drawn and not
progressed to the next observation moment. So, although the number of particles
remains the same, the variation in the particles in terms of their uniqueness in the
transition rules and values for inputs, boundary conditions and parameters
diminishes. This means that the initial probability distributions of these model
components are narrowed. Hence, the particle filter has identified which transition
rules are most likely to be valid (model structure), in what ranges the inputs,
boundary conditions and parameters are most likely to fall and the model has
thereby been calibrated automatically.

Case study

A simple case study is defined to test the usability of the particle filter for model
structure identification and calibration of a land use change CA. An important
current debate in the land use change domain is whether bioenergy from dedicated
crops is still sustainable when land use change is taken into account, in view of e.g.,
carbon emissions [21, 24, 25], rising food prices [26], and biodiversity [27]. For all
these aspects it is important to know where bioenergy crops have expanded and will
expand in the future. Such forecasts can be made with a land use change CA.

A key player in the bioenergy market is Brazil, mainly with the production of
ethanol from sugar cane. Within Brazil, the state of Sdo Paulo has the longest history
as well as the largest share (about 60% of the national production in recent years)
and still a significant growth in sugar cane production [28, 29]. The actuality of the
debate, together with availability of an annual spatial dataset of sugarcane
distribution from the National Institute for Space Research in Brazil (INPE) [30]
as observational data, makes sugar cane cropland expansion in the Sdo Paulo
state a suitable case for testing the usability of the particle filter for model structure
identification and calibration.

Model components from the PCRaster Land Use Change model (PLUC) [5, 31] are
used to create the set of candidate transition rules (probability distribution of in
equation 1). The land use change is steered by the demand for products associated
with the land use types, in this case sugar cane. The two most important components
of the transition rules are the suitability factors, which determine preferred location
of the expansion or contraction, and the allocation mechanism, which determines the
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degree of competition between land use types. The allocation mechanism is less
important when considering only one land use type, because no competition is
involved. So only the suitability factors and their parameters are sampled from a
probability distribution. Total suitability for a land use type at time step t can be
defined as:

sp= XK (wy uy,). for each ¢ )
with ¥ (wp) =1

In equation 5, uy € [0,1] is the suitability considering factor k, with k =1, 2, ..., K
and wy € [0,1] is the weight of factor k. In the data assimilation, the model structure
is defined by updating the distributions of w for all suitability factors. Some weights
will converge to zero, indicating that the processes, which the associated suitability
factors embody, are irrelevant in the observed system. The candidate factors and a
short explanation of the processes they represent are listed in Table 1.

Table 1: Candidate suitability factors for sugar cane in Sdo Paulo

Suitability factor Process represented

Sugar cane in neighbourhood Economies of scale

Distance to water Water availability for growth

Distance to Sao Paulo over roads Transportation costs to the main market
Potential yield Profits

Slope Mechanization potential, erosion
Distance to sugar cane mills Transportation costs to processing unit

For the Monte Carlo simulation and particle filtering the PCRaster Pyhton
framework [32] is connected to the PLUC components. The observational data are 6
annual maps of sugar cane occurrence, classified from Landsat images by INPE for
the Canasat project [30], with a resolution of 30 meters and a temporal extent
from 2003 to 2010 (a period of strong growth [33], stimulated by the introduction of
the flex-fuel vehicles). The data are resampled to a 1 kilometre resolution to align
with input data and projected to the Albers Equal Area projection to preserve
correctness of area, an important metric property in the model. In order to reduce run
time and to show that not only observations of state variables can be used as
observational data, but also derived summary statistics, the percentage of sugar
cane coverage in 100 x 100 km blocks is used as observational data.

Preliminary results

The model is run for 50 realizations, once without and once with particle filtering in
time steps 2 to 7 (2004 to 2009) using the percentage of sugar cane coverage in 100
x 100 km blocks as observational data. The evolution of the model structure can be
illustrated by the evolution of the weights of the six candidate suitability factors over
time (Figure 1). All factors start with a weight distribution that comprises all values
between zero and one. Over time, some particles are filtered out and others are
copied. Therefore the distributions converge, e.g., distance to sugar cane mills seems
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to be important as it’s weight converges to 0.7. Some factors” weights converge to
zero, which means the processes are irrelevant, at least with their drawn
parameterizations, and therefore excluded from the model structure. But, 50
realizations are insufficient to search the complete rule and parameter space. A run
with more particles will probably yield different results.

1.0 - *neiahborr‘modv : 1.0 - distance water
0.8 1 08 i
x x x x
06 % 06 ! x x x x
0.4 H i H § % 0.4 x x  x x x
*
ozf ¥ & ¥ ¥ & 02} ¥ " o =
x
0.0 ¥ x ¥ ¥ o 0.0 ii o ¥ ¥ 3
1 2 3d' 4 5. 6 7 8 1 2 3 4. L? 6 7 8
1.0 . distance city - - 1.0 yield
* %
u0.8> % 1 08 x x x % x
= i
.90'6 X ® ¥ 9:0 ¥ x x x x
gOA i ¥ . « x 0.4 y
by I I D ot B I T
0'01 2 3 4 5 6 7 8 0’01 2 3,..4 5.n-0 7 8
1.0 ' : slopé : 1.0 : distance mills .
0.8 x ] os x x  x x x x
' ) ¥ o ¥ x X
ok ¥ = b owx i 06F ¥ X x x x x
X X X X X
04f X % 0.4F %
wEREERERER-EEEEE
1 ¥ ¥ »
0'01 2 3 4 5 6 4 8 0'01 2 3 4 5 6 7 8
time step time step

Figure 1: Evolution of the weights of the candidate suitability factors over time in the ensemble
of 50 particles. Time step 1 is 2003 and the increment is annual.

To illustrate the effect on the state variable, the resulting probability that sugar cane
is present in a cell in a certain year is shown in Figure 2. A value 1 indicates that a
cell is certainly occupied by sugar cane, i.e. it was sugar cane in all realizations, a
value 0 that it is certainly unoccupied, i.e. it was sugar cane in none of the
realizations, and any value in between indicates uncertainty in presence. In 2005, the
third time step, the model results with filtering and without filtering (Monte Carlo
only) show little difference, as only one filter moment has passed. In 2009, however,
the maps with filtering exhibit much less uncertainty, i.e. more cells that have either
the value 0 or the value 1. This is because particles in which sugar cane was
allocated in wrong locations have been filtered out. As a result, the large areas that
remain free of sugar cane coverage, for example in the South-eastern corner and the
circular patch in the centre, are predicted much better by the model with the particle
filter than by the model without filtering, in which almost all cells in Sdo Paulo have
an equal probability to be covered by sugar cane in 2009.

Nonetheless, the 2009 map with filtering still does not match the observations fully.
This can have several reasons. An important one is that the percentage of sugar cane
coverage in 100 x 100 km blocks was used as observational data, meaning that the
model is only required to match the amount of sugar cane in a block, independent of
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the arrangement within this block. The sugar cane is now clustered too much by the
model. Including for example average patch size as an observation might solve this.
Secondly, as stated before, not enough realizations were used to search the complete
parameter space. Furthermore, it is possible that not all relevant processes were
included in the set of candidate rules, so that the model will never be able to
replicate the observations.

2005 2009

>z

probability
o 1

— Monte Carlo

0

probability
e 1

particle filter
[e— 0

[ sugar cane
I ro sugar cane

observations

Figure 2: The probability that sugar cane is cultivated in the Monte Carlo run without (top) and
with (middle) filtering, and the observations (without uncertainty) (bottom), for 2005 (left)
and2009 (right).

Discussion and conclusion

The particle filter has the potential to simultaneously identify model structure and
calibrate parameters of a land use change CA. We have shown how it can combine
prior information and observations, taking into account uncertainty in these
observations. The observations can correspond to the state variable or a derived
pattern characteristic, so that the absence of good quality land use maps is less of a
problem. The approach of integrated model structure identification and model
running allows to account for temporal patterns, such as feedback effects, important
in complex systems [9].
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Further research should be done using more particles to be able to represent the full
range of possible transition rule and parameter combinations. In addition, more
spatial pattern characteristics should be exploited in the filter, to better capture the
underlying processes [15] and thus improve the forecasting capabilities of the
model. Validation is needed to proof whether the proposed method results in
improved land use change predictions.
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Abstract

Since the 1960s, an increasing number of studies have focused on investigating the
determinants of urban residential location choices. Despite the valuable contribution
of these pioneer studies to the development of urban and spatial economics, many
researchers have doubted its applicability to the real world, criticizing some of its
simplified assumptions and, most important, the underlying idea that the
spontaneous action of market forces promotes higher levels of consumer satisfaction
and efficiency of resource use.

Contributing to this debate, this paper presents a spatially-explicit simulation model
built to explore an alternative perspective to the one provided by neoclassical
models of urban economics. This perspective is based on the theoretical framework
proposed by the economist Pedro Abramo in his book "The Kaleidoscopic City",
which relies on the heterodox economic literature to develop a new interpretation of
how residential choices are made. In this paper, we present simulation experiments
that explore the role of entrepreneurs’ actions in influencing the residential location
choice of families and the emergence of different global and local residential
patterns in the city.

Introduction

Since the 1960s, an increasing number of studies have focused on investigating the
determinants of urban residential location choices and their influence on the
emergence of spatial patterns that are able to affect the daily life of urban
inhabitants. The theoretical basis of the current mainstream approach to urban
residential location has its roots in models developed in the beginning of this period
by Alonso [1], Muth [2] and others. Following the principles advocated by these
neoclassical models, a unique and efficient order is achieved through residential
choices that balance a trade-off between housing consumption and commuting costs
to work.
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Despite the valuable contribution of these pioneer studies to the development of
urban and spatial economics, many researchers have doubted its applicability to the
real world, criticizing some of its simplified assumptions (e.g., lack of
interdependence of location choices) and, most important, the underlying idea that
the spontaneous action of market forces promotes higher levels of consumer
satisfaction and efficiency of resource use [3,4,5].

Contributing to this debate, this paper presents a spatially-explicit simulation model
built to explore an alternative perspective to the one provided by neoclassical
models of urban economics. This perspective is based on the theoretical framework
proposed by the economist Pedro Abramo in his book "The Kaleidoscopic City" (La
Ville Kaléidoscopique), first published in French in 1998. Considering the city as a
setting for disputes between heterogeneous agents with asymmetric power over the
market, the author builds on the heterodox economic literature to develop a new
interpretation of how residential choices are made. In this paper, we present
simulation experiments that explore the role of entrepreneurs’ actions in influencing
the residential location choice of families and the emergence of different global and
local residential patterns in the city.

Following this introduction, the paper is organized as follows: First, we provide an
overview of the theoretical framework that underlies our model of residential
location. Second, we introduce the goal and specification of the model, which is
called Kaleidoscopic-City as a reference to the title of Abramo's book. Then, a series
of experiments that explore the relations between entities described in the theoretical
framework is presented. Finally, we conclude with some final remarks.

Crucial Decisions and Urban Conventions: An Alternative Perspective to
Urban Residential Location

Instead of considering the trade-off between space and accessibility, Abramo
assumes that families choose their location based on neighborhood externalities, i.e.,
they prefer places where lower-income families are not present. According to his
approach, the residential location choice represents an investment choice, where, for
instance, parents can invest in the family's human capital by offering good
neighborhood relations and educational opportunities to their children [3].

While making their decisions, families perceive the urban space as a mosaic of
neighborhood externalities and, consequently, evaluate locations that are being
constantly modified by their own actions. However, because families’ decisions are
simultaneous and decentralized, no one can know in advance where each family will
decide to live. This uncertainty about the future can become particularly critical
when a family decide to make an opportunistic decision of investment and move to a
location with richer neighbors. This sort of decision may trigger a process that
Schelling [6] described as "tipping model": it may disturb some wealthier residents
already established in the location, motivate them to move out, and initiate a
transformation in the social composition of the neighborhood [3, p.57]. Therefore,
an opportunistic decision, seen as "non-rational” by the orthodox theory, has the
potential of becoming a crucial decision, able to lead the future residential order to
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an unexpected configuration and, therefore, establish a context of radical urban
uncertainty [3, p.58-59].

The state of radical urban uncertainty can be also (and especially) promoted by
another type of agent whose actions are essential to configure the urban order: the
capitalist-entrepreneur. Based on the Schumpeterian view of entrepreneurship,
Abramo emphasizes how entrepreneurs are able to make profits through the practice
of innovation. By building dwellings that are more innovative and attractive than the
existing ones, entrepreneurs avoid competition with old housing stocks and redirect
the demand to the locations where their newly built properties are offered. Thus,
entrepreneurs are able to modify the urban order by promoting a fictitious
depreciation of old housing stocks [3, p.71], which does not represent a physical
depreciation of properties, but a depreciation in the social status of residents living
in the location. This sort of decision made by innovative Schumpeterian
entrepreneurs becomes, therefore, a crucial decision that is able to lead to a context
of radical urban uncertainty.

Even in this context of uncertainty, market participants need to make their decisions
based on a game of cross-anticipation, where each agent must anticipate the location
choices of other agents and the neighborhood externalities emerging from them. To
address this decision-making problem, Abramo relies on techniques suggested by
Keynes [7], which indicate that, more than considering their own preferences, agents
try to guess and imitate the choice of other decision-makers [3, p.112]. This mimetic
behavior can converge to an urban convention, which is a collective conviction
regarding the type of family that is going to live in a particular location
(neighborhood externality) [3, p.287].

By adopting a mimetic behavior, agents need to identify who is better informed and
should be imitated. In this context arises the figure of the Keynesian speculator,
whose task is to predict the psychology of the market [3, p.137]. Abramo argues
that, in the residential market, the Keynesian speculator and the Schumpeterian
entrepreneur are merged into a single figure. Since Schumpeterian entrepreneurs are
the only able to promote innovations that depreciate existing residential areas, they
seek to assign themselves the role of emitting signals that announce changes in the
residential market [3, p.139-140]. Considering the entrepreneurs as better-informed
agents, families take these signals into consideration while making their residential
location choice. Thus, the urban convention becomes an element of spatial
coordination that results from a mimetic speculative process where families elect the
entrepreneurs' actions as source of information.

However, if on one hand the entrepreneur sends signals that lead to a spatial order
(urban convention), on the other hand they introduce innovations that lead to a
fictitious depreciation of housing stocks and the end of the convention. There is,
therefore, a tension between the order promoted by urban conventions and the
disorder introduced by crucial decisions. According to Abramo, this order-disorder
tension is what reveals the context of radical urban uncertainty and kaleidoscopic
spatial order that characterizes the market coordination of the urban space [3, p.
143].
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The Kaleidoscopic-City Model

The ordered-disordered dynamic described above, which is quite different from the
stable and efficient process advocated by the neoclassical approach, is explored in
this paper through the Kaleidoscopic-City model. By simulating the interdependence
between the decisions of heterogeneous agents (families and entrepreneurs) and the
neighborhood externalities emerging from these decisions, the model seeks to
investigate how crucial decisions made by entrepreneurs (innovation) contribute to
change the urban spatial order and the lifecycle of different regions in a city.

Agents and Environment

The model presents two types of agents: families (consumers) and entrepreneurs
(producers).

Families are spatially explicit agents hierarchized by their income level. They are
constantly evaluating urban locations and deciding whether to move to a different
place. In this evaluation, they take two aspects into consideration: the income level
of neighbors (neighborhood externality) and the innovation degree of dwellings.
Entrepreneurs are agents responsible for producing dwellings. They are not spatially
situated, although their actions are constantly affecting the urban space. They are
characterized by a producer profile, which can be innovative or imitative.

Innovative entrepreneurs produce dwellings with the highest degree of innovation
and always in the region recognized by the current urban convention as the one
where the richest families are going to live. If convenient, they can establish a new
convention by introducing innovations in a different region of the city. Imitative
entrepreneurs, on the other hand, do not have the ability of establishing new
conventions, since the innovation degree of the dwellings they produce simply
follows standards already set. Also, they may build in any region of the city,
although they have a higher probability of choosing the region that represents the
current urban convention.

The urban environment that is constantly being perceived and modified by both
types of agents is represented by a grid of cells and subdivided in different regions.
Each region is composed by a set of cells and can, temporarily, be recognized by the
urban convention as the region where the richest families are going to live. For
simplification, we call this region as "urban-convention region", since this paper
only addresses explicitly the anticipation regarding the location of the wealthiest
families.

The cells can be urbanized or not. Once urbanized, they can accommodate one or
more dwellings, depending on the maximum density allowed in the region where
they are situated. The dwellings located in a cell are characterized by a certain
degree of innovation and can be occupied by family agents.

Process Overview

The Kaleidoscopic-City model was implemented in Netlogo 5.0 [8] and its
simulation schedule is summarized in Figure 1.
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Figure 1: Simulation schedule

SIMULATION CYCLE

Initial state of the system

The environment is composed by a finite number of cells (N = 1254) and subdivided
in 12 different regions. A small number of cells, located within a radius r (ro = 5
units/cells) from the center of the grid, are already urbanized before the beginning of
the simulation. Figure 2 represents the 12 regions in different shades of gray and the
central urbanized area in a lighter shade.

An initial number of dwellings (d, = 20) with equal degree of innovation are
randomly located within the urbanized area. Each dwelling is occupied by a family
agent (Figure 2). Families have their income level defined according to a power law
distribution.

Entrepreneur agents are also created in the initialization phase. Their producer
profile (innovative or imitative) is defined according to a user-defined probability.

LGOS ko 30|

_— Urbanized area
(t=0)

Predefined

regions M Family agent

(consumer)

Family Income Level:

-
Lower Higher

Figure 2: Configuration of regions and family agents' distribution within the initial urbanized
area

Create new families and expand urban areas

In the first phase of the simulation cycle (Figure 1), n new family agents are created
(n=15). These new families, which are not yet assigned to any location of the
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environment, represent a new demand for dwellings and urbanized areas during the
current time step. Addressing this demand, an expansion of the urbanized radius will
occur in case the total number of families exceeds a predefined threshold.

Entrepreneurs' actions

In this second phase of the simulation cycle, the model simulates the entrepreneurs'
actions, which are responsible for supplying the demand for new dwellings. For that,
it executes the procedures summarized in Figure 3.

The first procedure consists on selecting one of the existing entrepreneurs, which
can be an innovator or imitator. Afterwards, the entrepreneur will choose a region to
build the new dwellings. An imitative entrepreneur can select any region of the city,
with a higher probability (50%) of choosing that region that represents the current
urban convention. An innovative entrepreneur, on the other hand, will always build
at the urban-convention region. Nevertheless, innovative entrepreneurs can evaluate
whether it is convenient to maintain the current convention or not. According to
Abramo [3], as the housing density of a region increases and approaches the desired
density for the place, the greater the chances that an innovative entrepreneur will
attempt to establish a new urban convention (greater uncertainty). In the model, the
maximum density allowed for a region is set as the "desired density".

/—/_ " Select Entrepreneur

v
YES . Evaluate current
convention

NO v
YES

g — Convenient?

Innovator?

No ||

v v

Select region to build < Establish new convention

v
Choose plot and
build new dwellings

v

\, NO Is demand

supplied?

YES |

v

Stop

Figure 3: Entrepreneurs' actions

Once the innovative entrepreneur decides to establish a new convention, the region
chosen to become the new destination of wealthy families starts a new phase of
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development: its maximum density allowed increases by 1, all of its cells are
urbanized (in case they were not already) and, most important, the innovation level
of the new dwellings built in the region will be the highest of the city.

After selecting a region, the entrepreneur agent will choose a plot and build new
dwellings. This process, which starts from the selection of an entrepreneur and
finishes with the construction of new dwellings, is repeated until the total number of
dwellings meets the demand.

Families' actions

In this phase, family agents decide whether to move to a different residential
location or not (Figure 4). Families that are already living in the city may want/need
to move for different reasons:

= They are unhappy about their neighborhood externality (neighbors' income is
lower than desired);

=  They are attracted to dwellings with a higher degree of innovation;

= The region where they live received investments that promoted the arrival of
new and wealthier residents. Consequently, the region's price is no longer
compatible with the family income level (gentrification).

Select Family

v
VES New in

V 4 the city?

NO I
v

Evaluate current location:
Neighborhood externality
and dwelling innovation

]

It needs/wants NO
to move? ™\
YES I
v v
\ Evaluate alternative " ’
—) . Stay in current location
locations
| 2
v
Any adequate NO
location?
YES |
v

Move to selected location

Figure 4: Families' decision-making process
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Families who need/want to move will evaluate up to n alternative locations (n=20).
In this evaluation, families search for an available dwelling that meets the following
requirements:

=  Those who are dissatisfied with the innovation degree of their dwellings will
look for dwellings whose innovation degree is within a range that is compatible
with their income.

=  Those who are already satisfied with the innovation degree of their dwellings,
but dissatisfied with the neighborhood externality of their current location, will
look for a place where the average neighborhood income is higher than the
average income of their social group.

Families who find a dwelling that meets the pursued requirements, will then move
into the chosen location. Otherwise, they stay in their current dwelling.

Unlike innovative entrepreneurs, families are not able to intentionally destroy or
establish an urban convention. Nevertheless, events that are able to disturb rich
residents who are living at the urban-convention region may motivate them to move
out and initiate a process that encourages innovative entrepreneurs to establish a new
urban convention. At the end of a simulation cycle, the model represents this process
by measuring how satisfied the urban-convention region's residents are regarding
their neighborhood externality. The lower the satisfaction is, the higher is the chance
that an innovative entrepreneur will decide to establish a new urban convention.

Output measures

At the end of each cycle, two different output measures are computed to monitor the
dynamics of urban regions: (a) density of dwellings in each region, and (b) average
income of the residents in each region (proxy of land value).

In addition, the spatial distribution of wealthy families is monitored through an
urban segregation index that measures the spatial isolation of this income group [9].

Simulation Experiments and Discussion

This paper presents experiments that explore the role of crucial decisions made by
innovative entrepreneurs in shaping the residential order of cities. It investigates
how the practice of innovation and its ability to establish new urban conventions can
affect the residential location choice of families and the configuration of different
global and local residential patterns in a city.

To test the impact of innovation and urban conventions, we simulated and compared
the emergence of residential patterns under two different conditions: one without and
the other with innovative entrepreneurs.

In the first scenario, without innovation, entrepreneurs are not able to interfere on
the establishment of urban conventions, as there is no differentiation among the
dwellings they produce and offer to the families. In this case, the only aspect
considered by the families while choosing a residential location is the income
composition of families living in the neighborhood (neighborhood externality).
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In the second scenario, 10% of entrepreneurs have an innovative profile. These
entrepreneurs can, therefore, assume an active role on establishing (and destroying)
urban conventions. By building innovative dwellings in a certain region of the city,
entrepreneurs avoid the concurrency with old housing stocks and can emit signals
about the future residential order in the city.

Figures 5 and 6 show the location of families with different income levels and the
local isolation index of wealthy families along the simulation of both scenarios (t=0,
t=50, t=100 and t=150). Through the comparison of these two figures, it is possible
to observe the aggregate outcome of the practice of innovation.

The scenario without innovation (Figure 5), where families' residential decisions are
only influenced by the social composition of the neighborhoods, the residential
dynamics are characterized by a higher degree of inertia, which results in an
increased stability of neighborhood externalities. As the population of the city
increases, families tend to occupy the urban space in a uniform manner and
progressively define the regions characterized by the presence of each social group.
The scenario with innovation (Figure 6), on the other hand, reveals a situation with a
much higher level of uneasiness and uncertainty, characterized by a greater mobility
of families in terms of residential location, which is exactly what ensures higher
profits for developers.

SCENARIO WITHOUT INNOVATIVE ENTREPRENEURS

(a) EAMILIES’ LOCATION
t=0 t=50 t=100 t=150

00 o BO® BETT w800 wnie

Family Income Level:  Lower W Higher

(b) ISOLATION OF RICHER FAMILIES
t=0 t=50 t=100 t=150

nes o o B0 wu o BO® wie ses

AR R .

Isolation Level:  Lower W Higher

Figure 5: Simulation without innovation: (a) families' location and (b) isolation of richer
families
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The maps showing the isolation of richer families exemplify this difference between
both scenarios: while in the first scenario, the wealthiest neighborhood was mainly
kept at the same place during the simulation (Figure 5b), the introduction of
innovations in the second scenario was constantly modifying the urban conventions
and, therefore, promoting a frequent change in the places where the richest families
live (Figure 6b).

It is also important to remind that the practice of innovation simulated in this
experiment, which aims at moving the wealthiest families to new locations,
promotes a fictitious depreciation of older housing stocks. In turn, this depreciation
intensifies the urban uncertainty by subverting the conventions that prevailed for
other social groups and giving rise to a chain of displacements of families with
different income levels.

This process results in what Abramo [3] described as the image of a mosaic of
neighborhood externalities in constant mutation or, in other words, the image of a
kaleidoscopic residential order.

SCENARIO WITH INNOVATIVE ENTREPRENEURS

(a) EAMILIES’ LOCATION
t=0 t=50 t =100 t=150

Family Income Level:  Lower W Higher

(b) ISOLATION OF RICHER FAMILIES
t=0 t=50 t=100 t=150
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%
¥ .

Isolation Level:  Lower e Higher

Figure 6: Simulation with innovation: (a) families' location and (b) isolation of richer families

The graphs presented in Figures 7 and 8 illustrate these considerations by comparing
the evolution of local residential patterns in both scenarios. In these graphs, each line
represents the trajectory of an urban region. Two output measures are used to
monitor these trajectories:
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= density of dwellings, which illustrates how intensive are the investments in a
region (Figure 7);

= mean income of families, which is here considered as a proxy of the land price
in a region (Figure 8).

In the first simulation experiment (without innovations), the density of dwellings

increases uniformly in all regions of the city (Figure 7a). This pattern is very

different from the one obtained in the experiment with innovations (Figure 7b),

where most regions have periods of accelerated increase in density (when set as the

convention region), alternating with periods of stagnation.

URBAN REGIONS: DENSITY OF DWELLINGS
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Figure 7: Density of dwellings in the urban regions: scenarios without and with innovation.
Each line describes the density of a region.

URBAN REGIONS: MEAN INCOME OF FAMILIES
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Figure 8: Mean income of families in the urban regions (proxy of land price): scenarios
without and with innovation. Each line describes the average income of families living in a
region.

Regarding the mean income of families (Figure 8), it is possible to observe how the
variation of this attribute is much smaller in the first scenario (without innovations).
The graph in Figure 8a shows that, after an initial instability associated to small
population sizes, regions tend to present a relatively stable neighborhood externality
(and, therefore, land price). On the other hand, because the innovations introduced in
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the second scenario promote a constant restructuration of the existing neighborhood
externalities, Figure 8b shows patterns characterized by "peaks and valleys".

The local outcomes of the practice of innovation can be seen in more detail in Figure
9, which shows the trajectory of urban conventions (Figure 9c) and its impact on the
development of urban regions (Figure 9a and 9b). In Figure 9a, each line describes
the dwelling's density of a region, while in Figure 9b each line describes the average
income of families living in a region.

DETAIL OF SIMULATION EXPERIMENT WITH INNOVATIVE ENTREPRENEURS

( t=20 until t=85)

(a) DENSITY OF
DWELLINGS

transition
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Figure 9: Urban conventions and regions' life cycles.

Taking the example of Region 1 (R1), which is represented by the black line, we can
see that in periods when this region is the current urban convention (highlighted with
a gray shadow in Figure 9), the place enters a transition period, characterized by
intensive investments and a sudden increase in dwellings' density (Figure 9a). At the
same time, the region becomes more attractive to richer families and a strong
increase in prices takes place (Figure 9b). This transition period ends with the
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emergence of a new urban convention. Then, the investments in region 1 cease and
the density of dwellings is kept almost constant (phases 1, 2, 3). With the most
innovative dwellings of the city being now located in a different region (new urban
convention) richer families feel motivated to move out from region 1 and are
substituted by families with lower income. This process causes a fictitious
depreciation in region 1 (Figure 9b): the housing dwellings remain the same, but the
social status of families living in the region (neighborhood externality) decays.

By observing and comparing the different sort of information provided in Figure 9,
it is possible, therefore, to see how the succession of urban conventions traces the
life cycles of urban regions, including their history of housing stocks and
neighborhood externalities. In these life cycles, transition periods characterized by
the construction of innovative dwellings and increase in prices are separated by in-
between phases where the housing stock is preserved, but different configurations of
neighborhood externalities take place (fictitious depreciation). These dynamic
processes, here demonstrated through simulation experiments, are theoretically
described in Abramo's book [3].

Final Remarks

This work presents a spatially-explicit simulation model that explores the heterodox
perspective of urban economics proposed by Abramo [3]. Unlike the orthodox
school, Abramo's approach assumes that the residential location is not an individual
and independent process. Instead, it emphasizes the interdependence between agent's
decisions and the spatial externalities emerging from them.

In this paper, we particularly focused on the impacts of entrepreneurs’ decisions.
While in the neoclassical view entrepreneurs assume the neutral position of price-
takers, the Kaleidoscopic-City model emphasizes their active role as price-makers.
In the pursuit of higher profits, they can try to manipulate the sovereignty of
consumers through the practice of innovation.

This alternative way to envision the residential market has implications for the
future urban order and, consequently, for the development of urban policies. The
approach explored in the Kaleidoscopic-City model is built on the Keynesian
speculative-financial paradigm, and not on the neoclassical exchange paradigm.
Studies and policies developed under this perspective should, therefore, do not rely
on economic predictions, but on the historical process of urban development and the
possibility of having economic agents making crucial decisions that redefine the
course of history.
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Abstract

Cellular automata that originated from the field of computer science and complexity
theory soon found their way into various disciplines. There are several good reasons
for the implementation of cellular automata in urban growth and land use change
studies, mainly the bottom-up generation of land use change or the availability of
raster data on land use and land cover. On the other hand, cellular automata do not
explicitly represent the land use change factors and other land use change factors are
completely ignored. To overcome the deficiencies of cellular automata for land use
modelling, significant modifications to the original concept of cellular automata
were adopted. This paper will present the improvements in structured form based on
examples of several existing simulation models.

Introduction

Cellular automata emerged in the field of computer science to be used mainly by
proponents of complexity theory to demonstrate the relation between the micro and
macro behaviour of complex systems. The cellular automata are based on rather
strong assumptions of the autonomy of individual automata behaviour, homogeneity
of their characteristics and transition rules. This paper claims that those features
make cellular automata suitable for the study of general processes of urban growth,
spread of diseases or propagation of innovations, but less for study of land use
change processes in general. The main reason is the artificiality of cellular automata
that makes them ignore many aspect of the physical, economic and legal reality
causing the important drivers and agents of land use change being improperly
represented.

Several decades of effort to implement cellular automata for land use simulation
have brought many interesting innovations that made the usability of cellular
automata for land use studies much more acceptable. The most significant
adaptations of cellular automata are described in the background of several existing,
well known simulation models.

Disaggregated description of land uses

The disaggregation of land use to multiple categories is necessary to distinguish the
qualitative differences between particular land uses. The examples of land use
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categories typically used by models are: housing, industry, service-retail, streets and
routes and in the case of the DUEM model [1] or gardens, field crops, pastures,
vineyards, riparian, native vegetation, water, urban, barren and feedlots in the case
of the SLEUTH model application in San Joaquin County in California, USA [2, 3].

The increase of the number of cellular automata states implies the higher complexity
of transition rules. The calibration of complex transition rules is not an easy task as a
sufficiently high number of observations of land use transactions between each land
use category are required. In reality, land use change is a rather slow process usually
offering an insufficient number of observations, especially in some land use
categories.

To reconcile the complexity of transition rules with the available data on land use
changes usually the number of land use categories is decreased by aggregating the
land use categories of rare occurrence or land use categories that rarely undergo
transformation. Another solution to the problem is to decrease the size of cells to
obtain more observation of land use changes. A priori constraining selected land use
transitions is yet another strategy how to reduce the transition rules complexity. For
example, the CUF Il model uses specific land use sequences that are assumed to be
significantly more probable than others [4]. The restriction of selected land use
transitions responds to the observed irreversibility of some land uses, such as urban
land uses that can hardly be transformed to agriculture land use.

Relaxing the cellular automata shape

The homogeneity and regularity of cell shape does not conform to the complex
morphology of physical structures, administrative and property borders observed in
reality. This hinders the acceptance of cellular automata as practical tools for policy
impact assessment. Some land use models, e.g. the one developed by Ferdinando
Semboloni [5], relax the regular and homogeneous shape of cellular automata to
adapt to irregular morphology and enable the representation of the parcel division
and merger processes. The uneven spatial distribution of characteristics led, in the
case of CUF | model, to individually adapting each cell shape to get cellular
automata with homogeneous land use, regulations, ownership or physical
characteristics [4, 6].

Including distant interaction

Each cellular automaton has a static set of finite neighbours to interact with. The
influences from a broader context are gradually propagated through the
neighbouring cellular automata by changing their states. This is appropriate for the
study of diffusion processes such as processes of succession, spread of infections or
dissemination of innovations. In reality, many drivers of land use change are not
mediated through neighbouring cellular automata. Many land use change drivers are
active in different temporal and spatial scales from the one, in which cellular
automata act. For example many types of flows, i.e. flow of products, investment or
population are at best ony implicit to the cellular automata transition rules.
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The inclusion of distant interaction into cellular automata transition rules is in many
cases realized by the extension of the cellular automata neighbourhood. For
example, the Metronamica model extends the size of the neighbourhood from the
traditional nine cell neighbourhood to one with hundreds of cells [7, 8]. The DUEM
model expands the size of the neighbourhood in a similar way.

An extended neighbourhood enables the inclusion of distance as a factor influencing
the strength of the interaction between pairs of cellular automata. In this respect,
cellular automata get closer to the principle of space-interaction models that utilize
some form of distance decay function. The inclusion of the distance decay function
into cellular automata interaction further increases the complexity of simulation
models and makes the models difficult to calibrate using the available data on land
use change. When considering the necessity of evaluating the interaction between
each pair of land use categories, the automatic calibration of the distance decay
function based on available data as in space-interaction models is not feasible and
some simplification of the calibration process is necessary. The Metronamica model
reduces the definition of the distance decay function to four representative points,
where each point has a special meaning in the neighbourhood. DUEM model
implements only two discrete spheres of influence [8].

The inclusion of distant factors of land use change increases the ability of cellular
automata to reflect important drivers of land use change. On the other hand it does
not change the fact that the cellular automata immobility prevents from meaningful
representation of real agents’ decision making as the mobile agent can realize its
preferences either by exploiting the characteristics of the locality, in which it resides
or to move to a new location, from its preferences point of view more suitable. The
agent-based models are therefore closer to the decision making processes of real
agents such as households and firms and enable the study of the migration processes,
residential choice and resulting processes of spatial concentration of agents and
resources.

Making cellular automata size and transition rules mutable

The cellular automata behaviour is dependent on the size of cells, definition of their
states (land use categories) and transition rules. As those characteristics are defined
a priori and not easily modifiable in the course of simulation, it is impossible to
explicitly represent the changing nature of land use transformations. There are
several attempts to circumvent the immutable size and behaviour of cellular
automata. For example, the SLEUTH model proposes behaviour aggregation by the
concept of Deltatron, which is an agent that modifies the behaviour of individual
cellular automata in such a way that the coordinated behaviour of a group of cellular
automata emerges [2, 3]. A similar concept is used in the OBEUS model, in which
the behaviour of unitary urban entities can be aggregated in the form of ensembles
called domains. The opposite process of cellular automata division is presented in
the model designed by Semboloni that employ the Voronoi partitions to cellular
automata [9].
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Reflecting different temporal and spatial dynamics of land use change

The land use change results from the immediate interaction among cellular automata
in their neighbourhood. The transition rules do not reflect the past, land use changes
or the potential of land use changes in the future. The autonomous behaviour of
individual cellular automata represents the land use change only on the level of
individual cells and the larger clusters of identical land uses are only product of their
spontaneous behaviour. Therefore, the land use clusters are not regarded as
qualitatively different, autonomous entities that would influence the behaviour of
individual cellular automata by any means, i.e. by (dis)economies of scale.
However, in reality observed land use changes demonstrate the autonomous
dynamics that transcend the spatial scale of the automaton neighbourhood and the
temporal scale of a single cellular automata cycle.

The land use models based on the principle of cellular automata adopt various
strategies to cope with the problem of temporal and spatial dynamics of land use
change. One approach, aiming at temporal dynamics of land use changes, is that of
the land use life cycle. Each land use, once initiated, must pass through all of the
prescribed life stages: initial stage, when it has a potential to initiate the land use
changes in neighbouring cells, the maturity stage, when the ability to initiate land
use change in its surrounding disappear, the stage of decline, when the land use
disappears leaving space for another land use initiation. This principle is applied in
the DUEM model [1].

An alternative approach considers land use change to be the result of a gradual
accumulation of a particular land use potential over a certain time period. The
cumulative potential equals the sum of past potentials in a certain time period that
are discounted by the time decay [9].

Yet another approach does not derive the probability of land use changes exclusively
from the influences of neighbouring cellular automata, but from past trends
describing the overall land use changes. This approach is close to the Markov chain
models and is employed by the SLEUTH model [2, 3].

The spatial continuity of land uses that is experienced in the real world as
continuous fields of identical land uses had been introduced into the cellular
automata by the concept of Deltatron [2, 3] and ensembles of land uses called
domains in the OBEUS framework [10]. Deltatron is an agent of land use change
residing in delta 2D space that is parallel to the cellular automata 2D space.
Deltatron is initiated at the moment when an automaton spontaneously changes its
land use. The initiated Deltatron than modifies the behaviour of single cellular
automata in the neighbourhood in such a way that the bigger clusters of land uses
gradually emerge. When Deltatron cease to be active, the cluster of spontaneously
created identical land uses slowly disintegrates [2, 3].

Economy of land use resources

Land use changes are generated exclusively by autonomous decisions of cellular
automata with regards to their neighbourhood composition ignoring the constraints
to global availability of land use resource. The simple solution of the limited
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resources allocation problem is to impose exogenous constraints on land use
demand. The supply of the land use then does not result from the autonomous
cellular automata behaviour anymore, but from the suitability of their characteristics
for specific land use. A typical example of this approach is the Metronamica model
[7].

Other approaches incorporate the demand and supply factors directly into the
individual cellular automata decision making mechanism. This approach is adopted
by the CUF Il model [4], in which the decision making mechanism of cellular
automata has the form of a multi-nominal regression model that evaluates the
probability of each land use transition based on demand factors: percentage of
employment change, percentage of household change, number of households,
number of jobs, job/household ratio and supply factors of land suitability and
accessibility. The demand and supply sides are balanced a priori and exogenously
by calibrating the supply and demand parameters of multi-nominal regression model
on the bases of historical land use changes [4].

In both of the cases presented, demand and supply are not adjusted endogenously.
To establish the balance between the supply and demand endogenously, the explicit
representation of the market mechanism would be necessary. The SLUDGE model
created by Dawn Parker demonstrates such a mechanism [11]. The cellular automata
in the SLUDGE model represent the landlords who decide between agriculture and
industry land uses based on the profit that each land use offers. The profit is
determined by two factors: the cost of production that is affected by negative
externalities caused by pollution from the industry and the cost of transportation of
products to the market place. Agriculture land use is the recipient of the negative
externalities produced by a neighbouring industry. Price is established based on the
shortage or surplus of products on the market, and the decision making of landlords
is influenced exclusively by the price of the products on the market and the cost of
production and transportation. During the simulation model run, each landlord tries
to find the best use for its land given the neighbouring land uses, distance to market
and price of products on the market. The model demonstrates that equilibrium can
be attained by different land use configurations with different Pareto efficiency [11].
But even the SLUDGE model is still based on unrealistic assumptions: there is
neither communication nor bargaining between individual landlords and the
landlords are expected to have homogeneous preferences and willingness to pay.
This may be true for many markets with ordinary goods but not for markets that
most significantly influence land use: the housing and land markets. Houses and
land as traded goods are heterogeneous in their characteristics. Furthermore, the
preferences and constraints of individual buyers differ substantially with respect to
houses and land.

To overcome the deficiencies the heterogeneous demand, individual characteristics
of traded goods and process of individual transactions will need to be explicitly
represented [12].
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Inclusion of exogenous factors of land use change

Often the impact of various regulatory and development policies on the behaviour of
individual subjects need to be assessed. For those purposes each cellular automaton
can be regarded as a landlord autonomously deciding on best use of its cell. Its
decision that is based on its ideal preferences can be then externally constrained. In
this way the land use simulation models, such as the Metronamica or the SLEUTH,
can serve as the experimental environments that enable the impact of policy
prescriptions in the form of spatial limits or the impact of various infrastructure
projects to be tested.

There are several alternative approaches to the incorporation of external constraints
to cellular automata decision making. In the SLEUTH model the autonomous
behaviour of cellular automata is constrained ex-post [3]. However, in the
Metronamica model, the exogenous factors of suitability, global accessibility and
zoning enter directly into the transition function alongside traditional neighbourhood
effects [7].

To evaluate the impact of external constraints on the behaviour of individual cellular
automata, the unconstrained behaviour of cellular automata has to be considered first
on the bases of their ideal preferences. But the inference of cellular automata
transition rules only from the observed behaviour of real subjects does not enable the
ideal preference structure of the subject to be distilled as a derivation of the subjects’
preference structure exclusively from the observed behaviour can lead to the
unrealistic behaviour of automaton mainly when there is a significant change in
external constraints to their behaviour [14].

To simulate the unconstrained behaviour of cellular automata, the simulation models
have to be based on an ideal preference structure that is declared by the decision
making entities themselves and not derived from their observed behaviour. Various
methods such as the conjoint analysis can be applied for the analysis of the ideal
preference structure [15].

The limits to cellular automata based land use models

The response to the oversimplification of the cellular automata models was the
relaxation of the original cellular automata assumptions. The modifications of the
original, oversimplified assumptions generally led to the improved predictive
validity of land use cellular automata models such as the SLEUTH and the
Metronamica [14, 3]. On the other hand, some limits for the representation of real
land use change processes are inherent in the cellular automata principles. The
cellular automata, while being supportive in illustration of complex system
behaviour in general, offer only excessively oversimplified representation of real
urban processes. The cellular automata do not reflect the real specificity of particular
urban systems behaviour and does not make use of practical and scientific
knowledge of them.

The effort to explicitly represent the driving processes of real land use transitions
logically leads to more general agent-based models that are better suited to represent
diverse subjects and entities participating in land use change, but the lack of suitable
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data on the behaviour of individual subjects and data on the specific processes that
prevent more widespread use of agent-based models. The cellular automata therefore
remain very attractive due to their simplicity and abundance of land use and land
cover data.
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Abstract

Some interacting particles systems, describing the stochastic evolution of particles
jumping on a lattice, are since recently used to model traffic flow. The approach is
close to cellular automata. Yet, the time is continuous with particles models while
the evolution is discrete with cellular automata. We propose to compare and connect
the two modelling approaches. The comparison is illustrated through the basic uni-
dimensional totally asymmetric simple exclusion process.

Introduction

Microscopic traffic flow models by cellular automata have been developed since the
1990's, and based on discrete synchronous time and discrete space. They are used
for theoretical purposes as well as simulation tools [1,2,3,4].

Interacting particles systems, proceeding from the fields of probability and statistical
physics, are also applied to model traffic flow [5]. The evolution of particles
jumping on a lattice by means of Markov jump processes in continuous time and on
a discrete space, such as for instance an asymmetric exclusion process [6], is used to
model multi-lane traffic flow [7]. The zero-range process [6,8] is fitted to model the
evolution of vehicle distance gaps [9] and the evolution of vehicles platoons [10], as
well as the misanthrope process [11,12].

One proposes to compare continuous-time interacting particles systems to stochastic
discrete-time cellular automata. We try to show how interacting particles systems
may be seen as an extension in continuous time of cellular automata in section 2.
The main properties of interacting particles processes and cellular automata are
introduced. The two modelling approaches are illustrated through the totally
asymmetric simple exclusion process in section 3.
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Comparing particles systems to cellular automata

The interacting particles systems are composed of particles and sites, but different
interpretations of particles and sites lead to different traffic flow models. For the
basic exclusion process, a particle is a vehicle and a site is a cell that may contain at
most one vehicle [7]. With the misanthrope process, a site is portion of a lane that
may contain several vehicles [12]. The zero-range model is convenient to describe
the evolution of the distance gaps in car-following [9]. Then, a site is a vehicle and a
particle an unit of distance gap. When a vehicle jump to the next site, a unit of the
distance gap is given to the following vehicle. The model is an exact mapping of an
exclusion process for which the jump of a vehicle depends solely on the distance
gap. The zero-range model is also used to model the evolution of vehicles platoons
[10]. A site becomes an empty cell and a particle a vehicle following directly the
cell.

Let S be a finite set of sites. 7, (x) is the number of particles at site X € S at time
t. Then 7, = {77l (x),xe S}e E is the state of the process, with E= N®or

E= {l,..., K}S if the number of particles by site is limited to K. In this last

bounded case, the interacting particles process is close to a cellular automaton. But
the evolution schemes diverge. The former evolves in continuous time while the
latter's evolutions is discrete.

Particles system in continuous time
In continuous time, the process 7, is a Markov jump process specified by a rate

function at which transitions occur. If S is finite, a transition from 77 to & (with
n # &) oceuring at rate b(z, &) means that:

P, (17 =&)=b(7.£)t+0(t) "
For the totally asymmetric exclusion process, the jump rate is the function:

b(77- 77)( ) = ﬂ’(n)ln(x):llq(x-*—l):o )

with A E — R™ the jump rate that may depend on the system state, X a site and

n(z) if z#x,x+1
n(x)-1 if z=x
X+D)+1 if z=x+1
n,(x)= 1D

In the simple case considered below, the jump rate is constant i(n)z A. For the
zero-range process, the jump rate depends only on the number of particles on the
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departure site, while for the misanthrope process it depends on the numbers of
particles at the departure and arrival sites.

The process defined by jump rate function b and space state E is characterised by
an operator I, denoted as the generator:

If ()=2 b7, [f ()~ f ()] ®

where f belongs to D(E,iR), the set of functions from E to R depending on a

finite number of coordinates.
The process is usually described by its performances in stationary state. The

stationary distribution of the process 7 : E — [0,1] is such that:

Vi €E, Py, =n)=7(n)}={vneE, Py, =n)==(n)

Forall 0 >0. The stationary distribution is given by the generator. A probability
measure 77 on E is stationary for the process 7, if and only if the measure is not
nil everywhere and if:

Zﬂ'(?]) If(7)=0, vfeD(E,R)

nek (4)

Note that the sum is finite since f only depends on a finite number of coordinates.

The set of the stationary distributions is always nonempty for finite E . Yet, explicit
forms for the stationary distributions exist mainly in basic cases.
A reversible measure 7z such that:

#(n)bln,&)=n(&)b(¢,m), V& eE ©)

is stationary. It is easier to solve (5) than (4). Reversibility is a sufficient but not
necessary condition for a measure to be stationary. For instance, totally asymmetric
process may have a stationary distribution which is clearly not reversible.

The zero-range process admits a unique stationary distribution with a product form
for spatial invariant initial configurations. The product form of a stationary
distribution means that the number of particles by site are statistically independent in
stationary state. This property generally simplifies the calculus. The misanthrope
process has this property only in a particular case.

Discrete time case towards cellular automata

In a discrete time case, the process is defined at times {n5, ne N}for a given time
step o >0. The discrete time process 7, is yet indexed by n. In this case, the
process is described by a Markov chain with transition matrix P such that:
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P(fr.c =&}/ =m)=P,(n=¢)=P.¢) vnécE o

P is a probability matrix in the sense that P(r,&)>Ofor all 7,& e Eand
pI P(n,f)zl forally e E.

For instance, assume that the process represents the evolution of the distance gap of
a line of vehicles. A site X is a vehicle and 77, (X) is the distance gap of the vehicle

X attime N. For the basic symmetric model [1], vehicles jump with a speed that is
the minimum beetwen the distance gap and the unit. The maximum vehicles’ speed
is the space step divided by the time step. For this deterministic model:

P(nn ’77n+1):1

for
77n+1(x) = 77n (X) + Vn+1(X +1)_Vn+l(x)

with V.., (x) = min {7, (x),1}
The Markov chains are usually described in stationary state with the invariant
distributions 77 of the process 5, satisfying:

Vi eE, P(n, =n)=z(n)}=1{vn € E, Py, =)= 7(n)}

and such that:

> aln)P(n,&)=n(&), véeE

n<E W)

(this equation is usually related as the master equation in statistic physics). A
reversible measure 77 such that:

()P, &)=n(£)P(&m), Vn.éeE

is stationary.

As for the continuous time case, the set of stationary distributions is not nil for the
discrete time process when E is finite. Explicit formula exist in basic cases. Note
that the discrete time approach may lead to complexity due to potential deterministic
periodicities that the continuous time case has not.

Simulation of the processes

In the continuous time case, each site with at least one particle has an exponential
clock giving the jump time of one of its particles. The evolution is event driven and
does not require to be specified. At each event (at each jump), one has to : select the
site with the minimum next jump time, update the time, realise the jump and
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calculate the new jump times of sites where the jump rates have been modified. Note
that, from a practical view, the continuous time model avoids the problem of priority
between two particles coveting simultaneously the same site, since particles jump
successively.

In the discrete time case, the discretisation scheme and the value of the time step
must be defined. For cellular automata, the update is synchronous. Yet, as we will
show in a particular case in the next section, the choice of a synchronous or a
sequential updates leads to different discrete processes.

The process can be simulated too by event as in the continuous time process by
subtituting the continuous exponential distribution with a discrete geometric
distribution. The simulation can also be iterative, by updating all the sites at each
time step.

Connecting the approaches

We aim now to connect the continuous and discrete time approaches. In the
continuous time case, the time T between a transition from 77 to & follows a

continuous exponential distribution with parameter b(77,§). In the discrete time
case, this time, yet denoted T5 is § times a discrete geometric distribution with

parameter P(n,f). By choosing:
P(,5)=6xb(n,5) Vn.&eE

one can explicitly demonstrate that the time for a transition in the discrete case
converges in distribution towards the transition time in the continuous case:

P(T, <t)=1-(1-th)"’ =1-e W —— 51— =P(T <t)

for all t>0. This mapping allows to compare continuous and discrete time
approaches through the value of the time step. Note that & S]/b is required so that

the time discretisation has a meaning. The performances of the discrete process
depend on the value of the time step.

Totally asymmetric simple exclusion process

The exclusion process [6] is an interacting particles system for which the number of
particle by cell is limited to 1. In the discrete time case, the model corresponds to the
NS traffic flow model [2] with a maximal speed value of 1. In the totally asymmetric
case, the particles jump only to the next cell with a rate of A >0 if the cell is
empty (see jump rate function (2)).

The process is one of the simpler conservative and uni-directional flow models. In
the continuous time case, particles jump to next sites if empty, according to
independent exponential clocks of parameter A . In discrete time case with time step
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o >0, particles jump to next sites if empty, according to a probability P . To
connect the models, let us assume that P = A0 . One has 0 <1/ A sothat P isa
probability. The discrete process is deterministic if & =1/A4 and random for
o<1/1.

Stationary distribution of the process

The stationary distribution of the exclusion process is not known for any rate
function. Yet, the simple process where the jump rate is constant is well-known.
For an infinite lane and invariant in space initial configurations, if 77 describes the

distance gap of the vehicles, the unique stationary distribution 7 of the totally
asymmetric simple exclusion process is the product form:

n)=[]70x)

xeE

[13] with the marginal geometric stationary distribution for the distance gap:
z,(n)=(v/2)@-v/1)

For an infinite lane, the distribution depends on a velocity parameter V usually
called fugacity. For a bounded case, the invaraint distribution depends on the
boudary conditions for an open system, or on the density level for a close system.
The fundamental diagram of mean speed or flow volume as a function of density can
be considered as a global indicator of the model performances studied in the traffic
community. Using the stationary distribution of the distance gap, the mean value is:

2 v
D(v 1 v/ﬂ nv//l _
(v) = Z(; =Ty

while the fundamental diagram of flow volume Q as a function of density O is:
Q (p)=20-p)

In the discrete time, the flow Qé. as a function of density is:

Qa(p):%(l—,/l—45}tp(l—pj)

if the update is synchronous [14], while the performance is the same as in the
continuous time case for a random sequential update [15]. As expected, one has:

Qs(P)—5—Qlp)
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The fundamental diagrams of mean speed and flow volume as a function of density
are plotted for the continuous and discrete time cases in figure 1. For this model, the
continuous time smooths the performances in stationary state.

Trajectories obtained

Some trajectories starting from an initial jam configuration are plotted in figure 2 to
compare the approaches. In the deterministic discrete case where & =1 the initial
jam propagates indefinitely. It is not the case for the stochastic models where
0 =0.9 or 0.5 or when the time is continuous. In theses cases, the traffic seems to
converge towards stationary states that do not explicitely depend on the initial
configuration. This is clearly not the case for the deterministic model where the
stationary state is a periodic limit state depending on the initial configuration. This
observation suggests that the calculus of the stationary state may be easier with the
stochastic models.
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Figure 1: Fundamental diagrams in stationary state for the TASEP in discrete synchronous
(with § =0.5, 0.9 and 1, dotted lines) and continuous time cases 1 =1.

Conclusion

Homogeneous interacting particles systems differ from cellular automata through
evolution schemes. The cellular automata models are defined in synchronous
discrete time, while the particles systems are continuous in time. In both case, the
simulation is easy.

The discrete time approach can lead to additional settings and parameters regarding
to the continuous time approach. Yet, time discretisation can have a physical sense
such as a reaction time, and allow to control the stochasticity. Notice that there is no
periodic stationary state with continuous time models. This aspect may simplify
analytical investigation as well as avoid unexpected periodic phenomena (sometimes
related as ping-pong effect with cellular automata). Moreover, due to the sequential
evolution of the particles, there cannot have conflict where two particles covet the
same site simultanously with the continuous time. This aspect concerns notably
multi-directional flow models by cellular automata and intersection traffic models.
Lastly, the vehicles” maximum speed is bounded to a space step by a time step with
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cellular automata (condition similar to CFL one). It is not the case with particles
systems since the time is not discretised.

Discrete time, delta=1

Y A
N = A
J el
ﬁ =

Figure 2: Trajectories of 7 particles since an initial jam configuration with the exclusion
process where 4 =1 for different evolution schemes.
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Abstract

Abuse of alcohol among post-secondary students is considered a serious health issue
and a body of academic literature has developed around its study. Binge drinking,
the consumption of five or more drinks in a single setting, is common, and clearly
has strong social aspects. The influence of social interaction among peers on binge
drinking has been noted but is not yet well understood. A cellular automata
simulation of these phenomena is presented here. Model design, methodology, and
experimental results are discussed. This project illustrates the role simulation
modeling can take during exploratory phases of research.

Introduction

The heavy consumption and abuse of alcohol among post-secondary students has
gained considerable attention in recent decades, influencing a significant body of
academic research [2][7][9][15]. Heavy episodic alcohol consumption, known as
binge drinking, continues to be a popular social activity among post-secondary
students, with a larger proportion of this population engaging in binge drinking than
non-students of the same age [7][13].

Binge drinking is defined as the consumption of five or more drinks in a single
session® (see [3][12]) and has been associated with a number of negative effects,
including many with health, behavioral and social consequences [1][5]. Alcohol-
related health and wellness concerns are particularly well-documented in recent

! There is significant variation and debate in the definition of binge drinking among academic
literature. Some researchers include gender-specific definitions, such as five drinks per sitting
for males, and four for females [6][7] [14]. Others add time constraints to further define a
drinking session [5].
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research. Long-term alcohol abuse is commonly associated with direct toxic effects
such as liver and kidney damage [24]. Various health risks impact the post-
secondary population in particular, including illness, injury, risky sexual behavior,
alcohol dependence, and death [7][22]. Wechsler and Nelson [14] report than an
estimated 1700 college-aged students die from alcohol-related injuries every year, a
large proportion of which are associated with motor vehicle accidents. Heavy
alcohol consumption has also been linked to poor academic attendance and
performance, as well as criminal and deviant behavior, including physical and sexual
assaults, vandalism, weapon use, drug use and arrest [2][5][7][10][23]. Second-hand
impacts of heavy alcohol consumption have also been documented among non-
bingers and abstainers within the post-secondary environment, including personal
and property victimization, and interrupted study and sleep patterns [9][22].
Although its consequences are well documented, binge drinking is a complex
behavior associated with and influenced by a variety of environmental, biological
and social factors. Within the post-secondary setting, age, gender, family history and
ease of accessibility to alcohol, among other factors, have been found to be related
to the prevalence of binge drinking [13][15]. In addition, recent research has further
stressed the importance of social influences on post-secondary student binge
drinking. Such behavior is more prevalent among students involved in athletics and
social organizations including fraternities and sororities [14][15][22]. The (actual or
perceived) drinking patterns of peers and the approval of friends may also influence
one's alcohol consumption [8][9][14]. These findings support the theoretical
contributions of social learning theory, which proposes that human behavior,
including binge drinking, is learned from interactions through peer groups and
exposure to alternate values and norms [22]. With this in mind, investigating the
effects of peer influences on binge drinking behavior may provide a better
understanding of alcohol consumption in post-secondary students.

Research through simulation modeling

While conventional statistical techniques are able to effectively demonstrate the
importance of peer influence on binge drinking, they are limited in their ability to
answer more complex questions about such behavior. For example, one may be
interested in understanding how different types of social interactions effect the
development of binge drinking among groups of college and university students.
Similarly, one may be interested in understanding the effect of environmental factors
on binge drinking behavior. Through the use of non-linear mathematical modeling
techniques, these areas of interest may be explored.

In addition, such techniques may be employed in simulation models to test a variety
of scenarios where “what if?” questions may be posed. For example, one may want
to know if binge drinking behavior develops differently among populations that have
different proportions of drinker types. Alternatively, one may be interested in
knowing if populations of hinge drinkers change over time when various social and
environmental influences change. Through the use of non-linear mathematical
modeling, it is possible to capture these complex dynamics and answer research
questions that could influence public policy.
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With respect to peer influences on drinking behavior, several non-linear
mathematical models have been proposed. For example, Gorman, et al developed an
agent-based model to examine social dynamics and environmental influences on
agents’ drinking behaviors [4]. Through a variety of simulations they were able to
demonstrate that contacts between agents were important factors in the social
dynamics that influenced drinking. Similarly, Ormerod and Wiltshire developed an
agent-based model to analyze the growth of binge drinking in the United Kingdom
[11]. Through development of a theoretical model and calibration with survey-based
data, the authors were able to show that the imitative behavior spreading across
social networks is a reasonable hypothesis to account for the patterns of binge
drinking that had been observed in recent years.

Agent-based models, however, have some limitations. Applications of agent-based
models in the social sciences often involve human agents with complex behavior
and psychology that are difficult to quantify and calibrate. As a result, caution must
be taken when interpreting the quantitative outcome of such models when the
accuracy of the inputs is questionable [25]. In addition, agent-based models require
the description of individual units which can be computationally intensive and time
consuming [25], limiting the number of agents included in a simulation, as well as
their detail and level of interaction.

In this project, we adopt Cellular Automata (CA) modeling as a means to focus
solely on the elements of concern: individual state (binging) and local interactions
(peer pressure). CA models are well suited for exploring the dynamics that occur
within a population, and are useful for visualizing the clustering behaviour of
communities. With this more abstract approach, it is possible to simulate large
populations with reasonable computational requirements.

Cellular automata modeling

In a CA model, a population can be represented in a two dimensional square grid
where each cell represents an individual in the population [17]. The state of each cell
can vary depending on pre-determined rules. These rules are derived from an
existing theoretical framework describing a particular phenomenon and are used to
model what is happening in the real world. A CA model can effectively capture
social interactions that happen over time [16][19]. Since each cell has the capability
of holding the information pertaining to that cell, changes can be recorded. In
general, CA models measure time discretely, in other words, progress through time
is represented as a series of time steps. The cells capture the information at each
time step and their states can alter through successive time steps [20].

In order to simplify the complexity of human behavior, CA modeling must make
assumptions which are supported by research. While each cell in a CA model can
potentially be influenced by surrounding cells, this model accounts for only four
neighbors: north, south, east and west. The assumption here is that individuals are
not impacted by everyone that physically surrounds them, but only those people they
have social contact with. This type of neighborhood is called the von Neumann
neighborhood.
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In this CA model the social interactions progress through time steps. The cells
capture the information at each time step and alter their state through successive
steps. These updates happen simultaneously following the pre-determined transition
rules. We assume this model to have a constant population even though there are
processes of births, deaths, immigrations and emigrations in any population.

The model

This model represents a social community of individuals with a high-risk of binging
behavior that extends beyond the physical boundaries of a specific geographical
area. Specifically, we consider a community of post-secondary students and their
direct social acquaintances. This community consists of three types of individuals.

= Non-Binger (NB)
= Occasionally Binger (OB)
= Frequently Binger (FB)

An individual can only play a single role at a time. Over time individuals can
transition from one state to the next based on predetermined rules. For example, an
OB can become a FB due to social interaction, and later become a NB following a
health problem. The purpose of this study is to analyze the evolution of a fixed
population in a community of such individuals.

Model design

This CA model integrates social influences and transition rules. The cells in the grid
interact as individuals would in a social community. The cells change over time as
they receive and give social influence to their neighbors. After each iteration, the
grid is updated to reflect the modifications. Since this is a scenario-based model, the
variables can be set according to input data and adjusted to reflect possible changes
in the community. Although the cells are stationary, the state of the cell can vary.
This reflects the change in social state individuals may experience during their life
course. These changes occur as a result of social influences and experiences. We
selected the von Neumann neighborhood and use the average of the surrounding
cells to describe these social interactions. Further, at any given time only a random
subset (i.e., one to four) of the neighbors exert social influence on a cell.

Modeling Process

The process of developing this model was similar to that described in [18]. We
began by surveying existing literature in order to generate a conceptual model of the
phenomena under study. We found that for binge drinking, while its characteristics
and effects have been well studied, the role of peer pressure is less well understood.
Clearly it is important: within the post-secondary setting, direct peer influences may
include pressure to consume alcohol by offering a drink, buying a round, or
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encouraging drinking games [21]. Social influences may also be indirect or passive
in nature, associated with perceived norms of heavy drinking among peer groups,
and general accessibility to alcohol within the post-secondary education setting
[9][15]. Ambiguity can be discouraging for a modeling project, but it is precisely
due to the difficulty of performing real-world experimentation and study on this
topic that makes this kind of attempt useful.

We proceeded to develop a mathematical model describing the various categories of
binge drinkers, and how change in category occurs. A computational model was
built, and preliminary experimentation showed the behavior resulting from the
proposed model. From this evidence, we returned to the conceptual and
mathematical models, and revised them. This process continued iteratively, noting
new behavior, and making changes as our understanding improved or as new
questions were raised. We retained intermediate models so that variations in
modeling binge drinking can be compared. Through this exploration of the
theoretical space associated with modeling binge drinking, we were able to identify
some model characteristics that matched our understanding of the phenomena, and
some that did not.

This approach is well suited to problems like this where the existing research does
not yet fully explain how a process takes place. Combining mathematical modeling
with computational simulation allows researchers to develop a possible model of the
target phenomena and then test it in action to see if its behavior matches real data
and experience, and is also consistent in a logical sense, i.e., the entities and
mechanics in the model behave as expected. If the design results in behavior that
runs contrary to the intention of the model, such as static behavior when dynamic
phenomena are being modeled, or if there is a lack of expected interaction between
entities, these are problems with the model itself. With complex phenomena, such
problems may only become obvious through experimentation of the model in
various scenarios, thus this is not a trivial step in this kind of research.
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Figure 1: Model of drinking transitions
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A deterministic model for binging

Let ke{1,2,3} denote the state of each individual, where 1 is for NB, 2 is for OB and
3 is for FB. Let the location of each individual s in the grid be denoted by (i,j) and N
= N;j; show the neighborhood of (i,j). We assume 1 < Ny < 4. For each individual (i,j)
in the grid we define Cj(t) as the social counter of the individual (i,j) at time t.
Suppose s is of type k' for k'e{1,2,3} and vy denotes the values of the social
influence of an individual of type k on s in the neighborhood Ns. Then we define

C;()=C,(t-D+e+ D vy @)
keNij
The parameter ¢ is a randomly determined value with a normal distribution centered

on zero. Using Figure 1 values of vy are o > 0 or < 0 based on the type of
surrounding neighbors.

Rules:

We assume that at the initial state C4(t)=0 for each cell s in the grid.

Case I: sisaNB (s=1)

o if Cy(t)<-1 for T time steps then s becomes an OB (s=2)
o if Cy(t)<-10 then s becomes a FB (s=3) in the next time step

Case Il: sisa OB (s=2)

if C4(t)<-1 for T time steps then s becomes a FB (5=3)
if C4(t)<-10 then s becomes a FB (s=3) in the next time step
if C¢(t)> 1 for T time steps then s becomes a NB (s=1)
if C¢(t)> 10 then s becomes a NB (s=1) in the next time step

Case lll: sisa FB (s=3)

o if Cy(t)>1 for T time steps then s becomes an OB (s=2)
o if Cy(t)>10 then s becomes an OB (s=1) in the next time step

Here T is the number of time steps needed to effect change in individuals, and 1 and
-1 are considered as threshold values for gradually changing the states of
individuals. The thresholds 10 and -10 are considered for major circumstances that
force individuals to change their states to 1 or 3, respectively.

Simulation Details

The binge drinking cellular automata application was developed in Java, and as such
can run on any common operating system. Many parameters can be altered,
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including the dimensions of the grid and length of the simulation. Currently, grids of
roughly 10,000 cells or less are supported. Execution time for an experiment can
vary between a fraction of a second up to one minute for large grids and/or long
simulations (2000 or more steps). Short execution times for experiments are a
priority since it allows for more responsive and interactive exploration of the
configurations of the simulation. The program features tabbed output allowing
visualization of the cellular automata itself, as shown in Figure 2, as well as plots of
interesting metrics, including population distributions and average cell value. Plot
functionality is supported by the versatile JFreeChart library.

(c) After 200 steps (d) After 300 steps

Figure 2: Binge drinking cellular automata

Experimental Results

Due to the exploratory nature of the development of this model, many possible
configurations of parameter values and options were available for running
experiments. The experiments described here used a 50 cell by 50 cell grid, and
were run for 600 steps. Various options were tested on our threshold model using the
base parameter values. Plots of the distributions of the populations of cell classes
can be seen in Figure 3. The options tested were

e  Whether or not cells in the extreme binging categories (NB and FB) can
change
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e Whether initial cell values are distributed evenly across categories, or are
distributed based on relationships found in a survey.

Testing whether or not cells in the most extreme categories could change was
investigated since it seemed conceivable that people entrenched in a given behavior
would not be susceptible to peer influence. After all four possible combinations of
the options were run, some patterns emerged. If the cells in extreme categories do
not change, then the CA as a whole quickly becomes dominated by the extreme
categories. Any OB cells are eventually influenced by neighbors of one extreme or
the other, until no mid-value cells remain. If cells of the extreme values can change,
a short initial period is characterized by a flourishing of mid-values, but these are
soon after absorbed into large, distinct clusters of extreme value. The use of the
survey relationships for setting up experiments had a clear effect, since NB make up
more than half of the total population. In this case, NB eventually dominated all the
cells if extreme values were capable of changing; if extremes could not change, the
OB cells still overwhelmingly changed state to NB. Notably, in all of these
experiments the extreme classes end up dominating the cell grid.
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Figure 3: Experiments on population distributions
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Experiments varying the strength of influence were also performed. The strength of
positive influences (i.e., against binge drinking) is determined by a; the strength of
negative influences by . They are usually set at 0.02, which allows for gradual but
noticeable change over the lifetime of an experiment. If these values are equal,
changing them simply alters the rate of change in the model. However, the model
behaves differently if a and S are not equal. With « set to less than g, if extremes
cannot be influenced, the stronger force initially converts more OB cells, but once
there are primarily only extremes left, the effect is minimal, since the remaining
cells are entrenched in their behavior. If extremes can be influenced, the stronger
force wins out eventually, dominating all cells. However, converting FB to NB, or
vice-versa, is still a slow process. Figure 4 shows two runs of the model with
(negative influence) higher than o (positive influence).
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Figure 4: Experiments on influence strength, o = 0.02, # = 0.03

In the base model, OB have no influence on similar neighbors. One alternate to this
is for OB to have an effect equal to a-8. Thus, they have a positive effect on each
other if a is greater than g, and a negative effect if the reverse is true. However, this
alternate rule simply accelerates any overall change in cell value. OB cells drift
towards extreme values more quickly, and the overall state of the system approaches
a steady state rapidly. This is true whether or not extreme values can be influenced.

Conclusions

The models included in this paper present initial exploratory experimentation that is
part of ongoing research into the social factors associated with binge drinking
behavior. The cellular automata approach proves to be a promising method for
investigating peer influences as it allows for both local and global population effects
to be considered while taking into account the dynamics of various types of social
and environmental influences. In the current work we adopted a simple approach
that allows us to vary the flexibility of binge drinking classifications, the distribution
of initial behavior classifications, and the strength of positive and negative types of
influences.
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Results of the experiments revealed several interesting patterns of social behavior
including considerable variation in the speed at which individuals change their binge
drinking habits. Such findings are encouraging at this early stage as they could lead
to more significant discoveries in future research. For example, with further
refinement to the model including the specification of positive and negative
influences, the results of experimentations could lead to important policy
implications for effective intervention strategies. It can also be used to support
research employing more traditional methods, such as by suggesting what kind of
questions should be asked in future surveys. We hope that this shows how
simulation modeling can be used even during exploratory phases of research.
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Abstract

When we take the time to observe nature, we often are surprised by the
complex forms and behaviours that may emerge, surprised by the self
reproduction and the self organisation phenomena that we notice, and we are
compelled to acknowledge how difficult it is to understand this complex nature in
perpetual state of evolution. By analogy to this nature, this paper deals with possible
spatial evolution by combining two spatial systems: land use and the transport
systems. However, underlying thi s evolution, there are processes that cannot be
easily captured through the use of simple methods/statistical tools. Nevertheless,
thanks to the emergence in the past few decades of artificial intelligence based
models such as cellular automata and neural network models, this paper proposes
to simulate future spatial evolution in Luxembourg and the Greater region up to
2020. The simulation results will act as the knowledge base which will make it
possible to understand the functioning of complex cross-border areas.

Introduction

Well aware of the stakes involved in understanding the processes that lead to the
innovation of spatial systems as well as the innovation in diffusion strategies that
often accompany them, geographers have mobilised diverse methodological
approaches that could facilitate better understanding of land use as well as transport
systems. Both these systems are complex, interdependent and complementary and
they both play a specific and instrumental role in spatial dynamics, and particularly
in urban dynamics.

Over the last few years, one of the most pertinent methodological approaches that
has addressed the issue of spatial dynamics has combined land-use and transport
systems in one single dynamic model. This approach particularly seeks
tounderstand how transport and land use systems encroach upon each other, and
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by doing so, determine the processes that influence land-use and land cover
changes. Combining these two systems within one dynamic model was facilitated
by the development of geographical information systems (GIS). However, to be
fully aware of the spatial and temporal dynamics of these structures, it has been
necessary to combine the GIS with artificial intelligence models such as cellular
automata [1] or neural networks [2].

Cellular automata are known for their ability to model spatial interactions at
different spatial levels (macro and micro) [3] [4]. Neural networks on the other
hand have the advantage, when combined with cellular automata, of facilitating the
development of spatial transition rules, and in particular, when these rules must
take several types of land use classes into account [2]. Moreover, neural networks
make it possible to determine the model’s parameters. Nevertheless, the challenges
associated to this type of hybrid model are at three levels: (1) definition of the
evolution rule, (2) model calibration and (3) model validation.

This contribution seeks to provide a better understanding of the stakes, challenges
and opportunities arising from a hybrid model and is structured around three main
sections. The first section describes key insights and places our research within
the context of previous studies on cellular automata and neural networks. In parallel,
it makes explicit the advantages of CA models in geography and spatial modelling.
Section two focuses specifically on the data and the methodological approach. It
shows how machine learning algorithms like neural networks are designed as
development models for cellular automata transition rules. The third section
addresses the application of a neural-network based on cellular automata in
Luxembourg and in the areas adjacent to its borders. This last section draws
conclusions and proposes discussion around this hybrid model while placing a
strong emphasis on the innovative aspects, perspectives, as well as on the issues that
need further development in order to improve the model and optimise the results.

1. General background and related work
1.1. Cellular Automata based model as a framework for urban modelling

Scientists such as Alan Turing [5], Stanislaw Ulam [6], John von Neumann [7], and
later John Conway [8] contributed to the cellular automata theory which considers
cellular automata to be universal and complex tools [9]. The current paper goes
beyond the tool factor and considers cellular automata as appropriate for modelling
dynamic processes of complex systems and formalising them through a “bottom-
up” approach. This approach considers that it is at the local level, via a well
defined (local) neighbourhood, that complex structures at the global
neighbourhood level arise. The interaction between local and global
neighbourhoods is what led to the popularity of cellular automata in geography as
from the 1970s. The famous law of the American geographer Waldo Tobler:
Everything is related to everything else, but near things are more related than
distant things [10], accompanied later by his vision of space as a grid of cells [11]-
law and vision that would be taken up by other geographers [12] [13] [14]-marked
the beginning of an interest in the cellular automata concept in geography and urban
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planning [15]. However, it was the development of geographical information
systems (GIS) which, through raster data formats, would facilitate comprehension
[16] as regards cellular automata and urban simulation [17] [18]. While simulating
land-use changes, the existence of multiple classes makes it difficult to set up
transition rules based uniquely on elementary cellular automata. If the classes are
binary (built-up land and not built-up land) a simple rule can be easily applied. But
if additional classes as well as variables are taken into consideration, setting up a
transition rule becomes complex. To alleviate this difficulty, some researchers have
proposed more complex cellular automata [19] [20] or have used machine learning
methods such as the support vector machine [21] and neural networks as the basis
for generating transition rules of cellular automata [2].

1.2. ANN as the framework for CA model transition rule

The neural network model was developed parallel to cellular automata, and, like its
predecessors, belongs to the family of artificial intelligence models [22]. As
opposed to cellular automata, neural networks are not bound by a grid of regular
cells. Theoretically, they are capable of accomplishing complex probabilistic,
logical and mathematical functions. This is possible as their architecture (Figure 3)
is based on a finite set of relations, connections, connectivities, interconnections and
feedback loops (for more complex neural networks) between neurons, in a random
manner [2]. Neural networks have a large capacity to learn data regardless of its
quality, as well as the ability to grasp complex non linear input-output relations in
the modelling process. They have different properties. (1) The neural network is
constituted of a directed, weighted graph in which the nodes represent (2) the
neurons. Each layer/group of neurons has what is known as an (3) activation
function. It is this activation function that leads to neuron interconnectivity and also
allows a neuron to influence other neurons. The connections between neurons are
known as synaptic connections which are responsible of diffusing weighted neural
activities also known as the synaptic weights. These synaptic weights are optimized
by the (6) the learning algorithm, an additional property of neural networks which,
through their analogy for living biological networks, simulate brain synaptic
plasticity. The synapses’ concept is fundamental in neural networks as it is on the
basis of what we call synaptic coefficients (defined in the learning phase) that the
network is calibrated. In our opinion, while synapses can be considered as
transmission and/or information reception channels, neurons represent “zones”
where the information transmitted or received by the synapses is stocked.

1.2.1. Why ANN? : Utility in land use changes and CA-based model

This section highlights the reasons that led us to use neural networks as the basis
for generating transition rules for cellular automata.

The first reason is linked to the networks’ ability to simulate complex functions due
to their capacity to extract patterns from data and learn them thus, to facilitate the
capturing of complex non linear relationships between different input variables and
the output in an explicit manner. As we are well aware, land use is one of the most
complex global spatial systems and this is linked, among other things, to (1) the
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existence of numerous land use classes; (2) to the complex and non linear
relationships between the classes (action, interaction, feedback loop); (3) to the
existence of dependent, independent and interdependent variables which influence
directly or indirectly the evolution of the land-use structure. Understanding this
evolution and the changes in particular, implies that simulation and spatial
modelling frameworks must take into account a variety of parameters. In addition, it
is necessary to emphasise that the more the land use class categories, the harder it
is to understand the land-use changes through spatial modelling. As a consequence,
on the basis of this complexity, the simulation of land-use changes becomes one of
the most arduous modelling tasks. This complexity cannot be captured through
elementary cellular automata. The second reason is linked to the difficulty in
determining transition rules in cellular automata. Neural networks offer a very
attractive alternative in generating transition rules [2]. The latter is one of the
most difficult characteristics to define in the cellular automata model especially
when inputs are numerous and share a particularly complex relationship. The third
reason is that neural networks have been successfully applied in Geography [23]
[24] and compared to other models (e.g. Logit, SVM) neural networks produce
better results [25] [26]. However, as in all artificial intelligence models, neural
networks have shortcomings primarily based on the time factor which is necessarily
important for setting up the model’s parameters for convergence as well as for
generalisation. In addition, it is often very difficult to find a “theoretical
framework”/ an empirical explanation of the “interaction decision” between the
neurons. Why is a neuron attracted to a particular neuron and not to another? It is
nevertheless certain that the decision to interact leads to the emergence of complex
structures with each passing moment, and in a non linear manner.

1.2.2. Details of the transition rules

This section gives details of how transition rules function. It also explores ANN’s
potential for CA-modelling. The transition rules presented here allow us to
investigate possible land use changes of the study area between 2000 and 2020.
Basically, the neural networks model functions in three phases. The first phase is
relative to the construction of the model’s structure on the basis of a database
randomly split in two phases: the training phase and the testing phase. The second
phase concerns network configuration based on the training data. During the
first phase, an algorithm known as the learning algorithm is mobilised to serve
as a weight optimization tool for the different synaptics connecting the network
nodes. This algorithm is fundamental as it determines the learning capacity of the
model. Learning is complete only when the algorithm has attained what we call a
stable state. The recognition phase is the last phase. We could also speak of
the network’s restitution phase. This refers to analysing, in relation to the inputs
injected into the model (input layers); whether the outputs correspond to expected
outcomes (output layers). This step is also relevant in verifying the model’s
generalisation capacity.
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Below is an example of a standard algorithm, the “multilayer perceptron” (ANN-
MLP) with the standard back- propagation learning algorithm used to develop the
model transition rules and the model’s structure. The standard Back- propagation
consists of minimising, using the gradient descent method, the mean square error
given by:

Bp= ) Z%(d} —yh? M

p=1j=1
Where df and y} are respectively the desired and the actual outputs for the "
neuron, n is the number of patterns in the training data set and n_ is the number of
output neurons. y]? is given by:
! i 1
Yi :f(uj) = 1 T (2)

+e7l
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uf = wly+ ) wiyl? ®
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Where | = 1...L denotes the number of corresponding layer S, wj‘o is the threshold

(or bias) of the j'" node in the layer I, yi~1 is the input coming from the previous
layer. In equation (2), the sigmoid has been chosen as the activation function.

The gradient descent method consists of minimising the error by updating the
weights. The training ends after reaching an acceptable error or when processing
the maximum number of iterations. The weights are updated using equation (6), first
the error signals of the output and the hidden layers should be calculated and,
subsequently, they are given by:

For the output neurons:
e}‘ =f (uj"‘) (dJL - ij) (4)
For the hidden layers:

Msiq
of = f(uf) ) (efrwis! (5)
r=1
The weights in the hidden and output are updated using the following equation:
wy;(k + 1) = wj;(l) + aejy;™ (0
Where o denotes the learning rate, generally a € [0,1]. The bigger is the learning

rate the faster is the training. A big learning rate may produce an unstable training
process.
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Below is presented the algorithm of an ANN-MLP trained using a “standard
backpropagation algorithm” algorithm for a neural network with one hidden layer.
1) Define the network structure, assign initial weights randomly.
2) Chose a pattern to process.
3) For each node in the hidden layer
evaluate the linear (1) and nonlinear outputs (2).
4) For each node in the output layer
i. using the results of step3, evaluate the linear (1) and the non linear
outputs (2)
ii. calculate the error signals (4)
5) For each node of the hidden layer
evaluate the error signals (5)
6) Update the weights of the hidden and output layers (6)
7) Repeat steps 3 - 6 for all patterns
8) Evaluate network error as well as the stopping criteria. If stopping criteria is not
reached, repeat steps 2-5.

2. Materials and Methods
2.1. Study area, main inputs and data sources

Our case study area is Luxembourg and the greater region that constitutes a part of
French (Lorraine), Belgium (Wallonia) and German (Rhineland-Palatinate and
Saarland) territory, corresponding to a total population of more than 11 million
inhabitants, that is, 3% of the EU-15 Member States’ population covering 60 401
kmz2. Thus, using a 100mx100m (one hectare) as a spatial resolution led us to deal
with a grid of more than 6 million cells. The Greater region over the past few
decades has become one of the most attractive regions in Europe [27] with
Luxembourg emerging as an economic engine; this country comprises
approximately 500 000 inhabitants and covers 2586 km2 Even though
Luxembourg is a small country, it has positioned itself as a “real core” within the
European Union due to a strong economy that is primarily based on finance and
industry. This economic strength impacts the migration flows which result in
significant residential and daily mobility [28].

Different factors characterise the model’s inputs. The first input is land-use in 1990
and in 2000, based on the Corine Land use classification in 100-m resolution [29].
Five land-cover classes are used for simulation; these are urban, industrial, water,
agriculture and forest (table 1). It is at the land-cover level that we find interactions
and feedback mechanisms between the different land-cover class categories. The
second input is the physical factor which we refer to as slope map. It is given as a
percentage calculated using a 100-m resolution Digital Elevation Model (DEM)
[30]. The third input is related to the transport network which will enable us to
evaluate the potential impact of the network on urban dynamics and to measure the
distance from the cell to the given infrastructure (Table 1). In addition to these
different inputs, we have used the Moore neighbourhood which comprises a grid of
regular cells with a 3x3 window where each cell has 8 neighbours (table 1). As a
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first step, the inputs of the cellular automata model are generated externally. In
more precise terms, they are generated using a Geographical Information System
tool (ARC-GIS-10 in this case) and Java before being “learned” by the neural
network. They are then integrated in the cellular automata as is shown in figure 1
which gives precise details on the conceptual modelling approach.

Table. 1. Description of the model’s inputs

Category Variahle Deseription

Spatial Urban-neighbours Amount of urban cells

in the 3x3 Moore neighbourhood
Industrial-neighbours Amount of industrial cells

in the 3x3 Moore neighbourhood
Agriculture-neighbours Amount of agriculture cells

in the 3x3 Moore neighbourhood
Forest-—neighbours Amount of agriculture cells

in the 3x3 Moore neighbourhood
Water—neighbours Amount of water cells

in the 3x3 Moore neighbourhood

Transport Transport—neighbours Amount of transport cells
in the 3x3 Moore neighbourhood
Distance—bus-station Distance to the closest bus station (meters)
Distance—train—station Distance to the closest train station (meters)
Distance—highway Distance from cell to the nearest highway access point (km)
Number-hus-station Number of bus stations located 2km away from cell
Number—train—station Number of train stations located 2km away from cell
Physical Slape Slope value of cell (%)
State State of cell

(1: built-up cell, 0: not built-up cell)

Proccessing

Datasets construction

Test Learning ANN CA ]& GIS
dataset dataset Rules
N
Maodel Model -
performance calibration Ly
(Kappaindex ) (Set of weights) Mapping

| Simulation

Figure 1. Conceptual CA based neural network model
2.2. Data preparation for model calibration and learning database construction strategy:

Table 2 summarises the data base for the periods 1990 and 2000 used for
simulation. Different types of evolution are elucidated: increase, decrease or no
change at all, as is the case with the transport network which remained unchanged
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due to the fact that there was no new highway between the period 1990 and 2000.
While growth is experienced in some of the land use classes such as the urban and
the industrial classes, other classes such as agriculture and forest register a slight
decrease. This decrease can be explained by the fact that the growth of built-up
surfaces (industrial and urban) generally takes place to the detriment of
undeveloped zones such as agricultural or forested areas. The class representing all
the humid (water) zones registers very slight growth. This growth cannot be easily
explained, but this could be as a result of measurement errors or of flooding which
could have occurred during the two periods studied. While table 2 highlights the
reality of the class evolutions observed between 1990 and 2000, table 3 presents
the second phase which consists in cleaning up the data so as to ensure model
convergence within minimal calculation time. This is known as the screening
process and it makes it possible to eventually work on a real screened base of 71422
observations. To better adjust the model, it is essential to optimise the learning
database. The simplest way to achieve this is to proceed by random sampling (50%
of observation for the learning database and 50% for the testing phase) from the
entire data base. However, in the case study presented here, a 50/50 random
sampling is not ideal; on one hand, we run the risk of not taking into account the
under represented classes which nevertheless determine the changes and the urban
dynamics as is the case for urban and industrial classes, and on the other hand, we
could under-estimate their role in the realism of the model. Subsequently, to attain
the objective of a realistic model, we propose a learning database construction
strategy. This consists of targeted sampling (table 4) concerning the urban and
industrial classes, thereby guaranteeing their representativity in the calibration
phase. To avoid choosing one particular division (vagaries), the base division
screened in two parts (training phase and testing phase: the construction method is
described here below) is repeated n times. This mechanism is known as cross-
validation and it makes it possible to validate the model.

Table 2. Land use and transportation statistics (proportion) in observed periods 1990 and 2000

Year Urban Industrial — Agriculture Forest Water Transport

1990 6.62 1.36 52.8 36.76 0.60 1.79
2000 6.75 1.54 52.5 36.74 0.61 1.79

2.87
2.57

Note: Configuration of the raster grid: squared grid with a resolution of 100100
meters (cell size of lha) and Moore neighbourhood.

In the neural model, determining the number of units in the hidden layer is essential
as the efficiency of the model depends on this parameter. To find the “optimal”
number of units, we vary the number of units in the hidden layer between 2 and 20,
and then select the number that minimises the error rate. The ANN-MLP model
is repeated 10 times in order to estimate the error variation (mean and standard
deviation) depending on the number of units (figure 2).
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Figure 2: Architecture of ANN-MLP (outputs: V1, V2, V3, V4 correspond respectively to

urban, industrial, agriculture and forest at time t1=2000; inputs: V5, V6, V7, V8, nbbus:
number of bus stations, nbtrain, nburban, nbindustrial, nbagriculture, nbforest, nbwa ter,

nbtransport, slope, dist_bus_station, dist_train_station) correspond to all variables/outputs at

time t0=1990 ; described in table 1.

Table 3. Summary of land use classes, in the dataset, in observed periods 1990 and 2000

Class Total dataset Clean dataset

1890 2000 1990 2000
Class # i i i i
Urban 434574 6.62 442064 6.75 14735 20.63 16065 22.49
Industrial 89373 1.36 100994  L.54  TIL1  9.96 8437 11.81

Agriculture 3468220 52.87 3448154 5

2,57 21197 20.68 18773 26.29
Forest 2411034 36.76 2410159 36.74 15382 21.81 15187 21.26
Water 30042 0.60 39081  0.61 3077 431 3240 4.54
Transport 117228 L.79 117228  L79 9720 13.61 97200 13.61
Sum 6559480 100 6559480 100 71422 100 71422 100

Note:  We want a dataset with all the unique observations. Thus a preliminary
step was conducted to remove the duplicate observations from the whole dataset
(6559480 observations). As result, we obtain a clean dataset with unique patterns
with 71422 observations
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Table 4. Summary of land use classes, in the dataset, after cleaning

Total dataset Training dataset Test dataset
Land use % % %
Urban 16057 27.49 9575 27.33 G482 27.75
Industrial 8410 14.40 5109 14.58 3301 14.13
Agriculture 18773 3214 11316 32.20 T457 31.92
Forest 15161 25,96 9040 25.80 6121 26.20
Sum 71422 100 35040 100 23361 100

In the table below (table 5) (confusion matrix), we present the prediction results
(ANN-MLP (h*=4)) for the testing phase. This matrix makes it possible to merge
the observed and the predicted data. The overall rate of correct prediction is
88.76%.

Table 5: Confusing matrix from ANN-MLP model using test dataset

Urban  Industrial  Agriculture  Forest  Accuracy (%)

Urban 3741 63 342 a9 88,96
Industrial 76 3363 556 210 70.97
Agriculture 26 191 3835 153 a91.20
Forest 2 135 76 3062 94.93
Reliability (%) 97.29 87.46 0.7 090.43 RE.76

Note: Accuracy and reliability are two common measures obtained from the
confusion matrix (details are given in the next sub -section). The diagonal
elements in the matrix represent the number of correctly classified pixels of each
class and the off-diagonal elements represent misclassified pixels or the
classification errors.

2.3. Kappa index method for land use accuracy assessment: preliminary analysis

We have used the Kappa Index of Agreement (KIA) method to validate the model
[31] [32] [33]. This method allows us to show the agreement between observed and
simulated accuracy/data. The table 6 represents the confusion matrix of the observed
and the simulated data for the period 2000. The diagonal of the matrix represents the
number (also expressed as a percentage) of the accurately predicted cells. The
values outside the diagonal represent the simulation errors for the period

2000. The results represented in table 7 generally confirm a good model calibration
and show the model’s capacity to replicate the observed reality, that is to say, the
situation in the year 2000.
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Table 6: Confusing matrix between the observed and the simulated land uses in 2000 (in %)

Simulated land uses in 2000
Urban Industrial Agriculture Forest Total
Observed Urban 134135 12 8556 253 442956
land (98.009)  (0.003) (1.932) (0.057) (100)
uses Industrial 435 87731 10852 1940 100958
in 2000 (0.431) (86.899)  (10.749)  (1.922) (100}
Agriculture 35725 446 3411132 851 3448154
(1.036)  (0.013) (98.926)  (0.025)  (100)
Forest 8 731 1419 2407845 2410003

(0.000)  (0.030) (0.059)  (99.910)  (100)

Note: For the confusion matrix table we have used the value of 0.44 as the cut off
threshold. This threshold allowed us to calibrate the model: we assign the cell the
land use class with maximum probability if this maximum probability exceeds the
given threshold and if not the cell keeps it previous state.

Kappa Index of Agreement (KIA) for Overall Kappa:

KlA:(po*Pc)/(l*pc) (7)

where, p, represents the observed accuracy or the proportion of agreement. p.
represents the chance agreement.
Kappa Index of Agreement (KIA) for the category Kappa:

KIA= (pii - pi *0i) / (pi - pi * i) (8)

where, Pj; represents the proportion of unit agreement in row [i] at column [i]. P;
represents the proportion of unit agreement for expected chance agreement in row
[i].

As regards the Kappa results, table 7 presents two types of results. One shows the
model’s performance in relation to the entire database studied, that is, the overall
result based on equation (7) and other more detailed results which show the same
model’s performance in different land use categories base on equation (8). The KIA
results range from 0 to 1 where the values 0 and 1 signify respectively, poor and
perfect agreement. Globally speaking, as table 7 has shown, there is an almost
perfect agreement between the observed and the simulated situations (table 7).

Table 7: Detailed Kappa results, overall and per land use class

Overall Urban Industrial Agriculture Forest

Kappa 0.983 0.978 0.867 0.976 0.998

Land use maps are considered to be categorical maps and consequently, the kappa
index and other derivative approaches (eg. Fuzzy set approach [34]) are thought to
be useful methods for assessing the similarity between observed and simulated
datasets [35]; [36]. However, the kappa method has been highly criticised for
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failing to distinguish whether land use/cover class changes during the transition
phase are drastic or not. Moreover, regardless of the level of change that a given
land use/cover class undergoes, the values remain extremely high. This is
problematic when simulating territories where the urban system is far from
equilibrium (in other words, a city with a phase of exponential urban growth).
However, when simulation is carried out in spaces where the urban systems are in
equilibrium (urban and/or constant growth) as is the case in most European cities
where anticipating exponential urbanisation is no longer feasible, using the kappa
index remains a valid and interesting method to distinguish the differences between
observed and simulated situations. This method is also valid when comparing results
within a comparable study area, in other words, a similar study area. However, even
though the results are good in general, the kappa index remains inadequate as a
validation method and must be compared with other methods of validation. It is for
this reason that we propose, in a more detailed contribution, to use other validation
alternatives based on existing models that have already been tried and tested such as
Receiver Operating Characteristic (ROC), cross validation or the pattern based
analysis (eg. cluster analysis [37]).

3. Simulation results

The analysis of the results shows that the automata based neural network model
presented in this paper functions well in general. Indeed, table 8 which
summarises the observed and simulated results up to 2020 shows reasonable
results concerning the evolution of each land use class as well as coherency in
simulation. Some of the land use classes expand to the detriment of others. This is
the case of the urban and industrial classes over the agricultural class (Table 8).
This table also shows that relationships between land use classes appear to be
very complex. This is especially true for the urban and the industrial classes
which are sometimes difficult to dissociate. Both classes represent artificialised
areas and often interconnect in order to constitute continuous, discontinuous or
mixed settlements, a fact that complicates spatial modelling. In addition, even if
these two classes are interconnected, they do not have the same level of influence
over each other because, if it is true that an industrial class can “easily/frequently”
become an urban zone (after a decrease in industrial activities in a region for
example) the contrary is less frequent. The results also show that if the expansion of
urban and industrial classes was continuous, it became stable with time. This can be
easily explained: the land reserves which were available 20 years ago and which led
to a dispersed urbanisation no longer exist. In addition, as the cartographic results
show, urbanisation in 2020 only points to a continuation of previously observed
trends and is located in already urbanised areas as well as along transport axes
(Figure 4).

Actually, urban growth is particularly significant around transport
infrastructures. Undoubtedly, interdependence exists; urban growth is stimulated
by the presence of a transport infrastructure and depends on the distance of the land
use class from the transport infrastructure in question (Table 1). The neural
networks as well as the cellular automata seem to have effectively highlighted
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this interaction between these two complex systems namely land use and transport
networks. Moreover, this urban structuring around transport axes explains (Figure
4) the metropolitan urban organisation of the Greater Luxembourg in different axes/
parts of the territory. A first, highly urbanised, North-West axe corresponds to the
Belgian part of the territory. It is here that we find the largest urban areas such as
Liege or Charleroi. Next, there is a second Centre-South axe which corresponds to
the Luxembourg and French part of the study area; with linear urbanisation, it is
also represented by large urban centres such as Luxembourg, Metz and Nancy.
Finally there is a third axe that is less linear which corresponds to the German-
Luxembourg part of the Greater Region with the polarised area on the German
side through Saarbriicken. Close to the polarised areas, there is a large urban sprawl
over the whole territory. Generally speaking, most of the urban growth takes place
on desirable spaces, that is to say, spaces well adapted for urban growth as they
have less steep slopes (Table 1). Nevertheless, it is important to highlight the fact
that even if there are higher levels of urbanisation in this region, forested and
agricultural lands take up most of the territory (Table 3 and table 8). The simulation
results also confirm that, in addition to the transition rules (good
convergence/coupling between CA and ANN), the cell states and the neighbourhood
configuration, the influence of spatially roads and there derivative distances are also
fully determinant in cellular automata based models and can induce urban growth
[38].

However, as regards figure 4, by comparing the different situations taken into
account (observed and simulated situations in 2000), it appears that the model
indicates a highly urbanised zone which was inexistent in the situation observed in
2000 and which will persist until 2020. Several questions arise: why is this urban
growth situated at this level (and not elsewhere) of the study area? Why will it
persist up to 2020? Why is the urban class that is hardly present in this area
overestimated and not the forest class which is very close-by and which also
dominates this particular part of the territory? Is it due to the fact that the forest
class is located on a highly steep slope considered to be repulsive to urbanisation?
We can propose a few answers but these must be treated with caution. First, as
regards the model, and more specifically at the model calibration level which uses a
neural network which clearly overestimates urbanisation in this part of the
territory compared to the situation observed. This suggests that the neural network
proposes a stronger attraction between the urban class and the agricultural class than
with the other classes in the immediate vicinity and that it is undoubtedly necessary
to stabilise the connections between the urban class and the agricultural class so as
to maintain over time a more realistic model. However, this does not explain why
we observe this here and not elsewhere. This calls for further reflection and
discussion in our current and future research projects. Secondly, beyond the model,
it appears that this urban growth, even though nonexistent in the situation
observed, is not unrealistic as it takes place close to a vast transport network
where the industrial classes are also located. Moreover, this urban growth (which
is discriminatory) takes place to the detriment of agricultural spaces as the latter
are highly desirable and favourable for urban development (high suitability area for
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urbanisation). This is a phenomenon that we have observed in our different studies
and which is a daily reality in our regions.

Table 8: Simulated land use changes by class in hectares (%)

Observed situation Simulated situation
Land use 1990 2000 2000 2010 2020
Urban 434574 442964 470314 470320 470320

Industrial 89373 100994 89375 89417 89478
Agriculture 3468229 3448154 3432422 3432356 3432280

Forest 2411034 2410159 2411099 2411117 2411123
Road 39042 39981 39042 39042 39042
Water 117228 117228 117228 117228 117228
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Figure 4: Cartographic simulation results: The Greater Luxembourg in 2020.
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4. Conclusions and discussions

The results presented in the different tables show that the relationships and
interactions between the different land use classes are often complex and difficult
to understand. All the classes do not function in the same manner and some
classes have an impact on the development of others. This is especially true for the
urban and industrial classes; for example, the majority of the growth observed in
industrial and urban classes occurs to the detriment of agricultural classes.
Ultimately, what the model developer seeks to achieve, regardless of the model
used, is to simulate land use changes, is to emphasise/reproduce real urban
structures/patterns.

The paper presents a model which integrates neural networks into a cellular
automata model and shows that these two tools are complementary and able to
provide significant results for analysing complex systems. However, it is still
extremely difficult to calibrate this type of model even if its structure appears to be
simple. Moreover, taking into account several variables in addition to the land use
classes accentuates this difficulty and lengthens the time necessary to implement the
model. The neural networks in this work made it possible to: (1) elaborate cellular
automata transition rules, to (2) determine the parameter values, (3) to make a non
linear prediction of the land use changes all the while (4) minimising the input level
errors of the model. However, this type of model raises questions: Are we really
in the presence of a cellular automaton? Would it not be more appropriate to
speak of a Neural Automaton (NA)? In future studies, we hope to improve the
model by applying, for example, other validation tools such as the multi-class
Receiver Operating Characteristics (ROC). Taking into account new variables, such
as population, distance from the border, could, in the near future, make it possible to
better analyse the robustness of the model. Finally, to better understand the urban
phenomenon in the Greater Region, we will also consider the integration of
variables such as suitability maps in order to get around the problem of zoning
unavailability (impossible to attain in such broad border cases) on one hand and on
the other, we will propose an urban development of the Greater Region and of
Luxembourg which is as close as possible to the reality.

References

[1] Batty, M., Xie, Y. (1994). "From cells to cities. " Environment and planning B: Planning
and Design, 21: 531-538.

[2] Li, X., Yeh, A.G.O. (2002). "Neural-network-based cellular automata for simulating
multiple land use changes using GIS." International Journal of Geographical Information
Science, 16 (4): 323-343.

[3] White, R., Engelen, G. (2000). "High-resolution Integrated Modeling of the spatial
Dynamics of Urban and Regional System." Computer, Environment and Urban Systems,
24: 383-400.

[4] White, R. (2005). "Modelling Multi-scale Processes in a Cellular Automata
Framework". In J. Portugali, ed.: Complex Artificial Environments, Springer-Verlag
(2005), pp.165-178.

[5] Turing, A. (1950). " computing machinery and intelligence." Mind 59(236): 433-460.

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 173



Basse et al., Cellular automata based neural networks for modelling dual complex systems

(6]
[7]
(8l

[9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

Ulam, S. (1952). "Random processes and transformations.” International Congress
ofMathematics.

von Neumann, J. (1966). Theory of Self-Reproducing Automata, University of lllinois
Press, Urbana.

Gardner, M. (1970). "The fantastic combination of John Conway’s new solitaire game
life." Scientific American. 223: 120-123

Wolfram, S. (1984). "Cellular automata: A Model of Complexity.” Nature 31: 419-424.
Tobler, W. R. (1970). "A computer movie simulating urban growth in the Detroit region."
Economic Geography 46(2): 234-240.

Tobler, W. R. (1979). "Cellular geography" in Philosophy in Geography, S.Gale, G.Ollson
(Eds), Reidel, Dordrecht: 279-386.

Couclelis, H. (1985). "Cellular Worlds: A framework for modeling micro-macro
dynamics." Environment and Planning A (20): 99-109.

Phipps, M. (1989). "Dynamical Behavior of Cellular Automata under the constraint of
Neighborhood Coherence." Geographical Analysis 21: 197-204.

White, R., Engelen, G. (1993). “Cellular automata and fractal urban form: a cellular
modelling approach to the evolution of urban land use patterns.” Environment and
Planning A: 25: 1175-1199.

Benenson, 1., Torrens, P M. (2004). "Geosimulation: object-based modeling of urban
phenomena." Computers, Environment and Urban Systems 28(1-2): 1-8.

Clarke, K. C., Gaydos, L. (1998). "Loose coupling a cellular automata model and GIS:
long-term growth prediction for San Francisco and Washington/Baltimore." International
Journal of Geographical Information Science, 12: 699-714.

Batty, M., Xie, Y., Sun. Z. L. (1999). "Modeling urban dynamics through GIS-based
cellular automata. " Computers, environment and urban systems, 23(3):205-233.

Torrens, P. M., O'Sullivan, D. (2001). "Cellular automata and urban simulation: where do
we go from here." Environment and Planning

B: Planning & Design 28(2): 163-168

White, R., Engelen, G. (1997). “Cellular Automata as the basic of integrated Dynamic
Regional Modelling." Environment and Planning B 24: 235-246.

Barredo, J. I., Kasanko, M., McCormick, N., Lavalle, C. (2003). "Modelling dynamic
spatial processes: simulation of urban futur e scenarios through cellular automata.”
Landscape and Urban Planning 64(3): 145-160.

Yang, Q., Li, X., Shi, X. (2008). "Cellular automata for simulating land use changes
based on support vector machines." Computers & geosciences, 34(6):592-602.
McCulloch, W.S, Pitts, W. H. (1943). "A logical calculus of the ideas immanent in
nervious activity.” Bulletin of Mathematical Biophysics 5: 115-133.

Openshaw, S., Openshaw, C. (1997). Artificial Intelligence in geography. Chichester,
England: John Wiley & Sons.

Wang, F. (1994). “The use of artificial neural networks in a geographical information
systems for agricultural land-use suitability assessment.” Environment and Planning A:
26: 265-284.

Zhou, J., Civco, D. (1996). "Using genetic learning neural networks for spatial decision
making in GIS. " Photogrammetric Engineering & Remote Sensing, 62, 1287-1295.
Omrani, H.,. Charif, O., Gerber, P., Bodis, K., Basse, R. M. (2012). "Simulation of land
use changes using cellular automata and arti ficial neural network. " Technical report,
CEPS/INSTEAD working paper series.

Sohn, C., Reitel, B., Walther, O. (2009). "Cross-border metropolitan integration in
Europe. The case of Luxembourg, Basel and Geneva. " Environment & Planning C. 27:
922-939.

Omrani, H., Charif O., Klein O., Gerber P., Trigano P. (2010). "An Approach for
spatial and temporal data analysis: application for mobility modeling of workers in

174 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

Basse et al., Cellular automata based neural networks for modelling dual complex systems

Luxembourg and its bordering areas.” In: IEEE-SMC. IEEE International Conference
on Systems, Man, and Cybernetics. ISTANBUL, 2010, pp.1437-1442.

EEA (2000). CORINE land cover technical guide—Addendum 2000. Technical report No
40, European Environment Agency, Copenhagen, pp. 105. Documentation: URL:
http://reports.eea.europa.eu/tech40add/en Data source: URL:
http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=1103.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M.,
Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J.,
Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007). The Shuttle Radar
Topography ~ Mi ssion, Reviews of Geophysics, Volume 45. RG2004,
doi:10.1029/2005RG000183. Awvailable at the website of Consultative Group for
International Agriculture Research (CGIAR), CGIAR Consortium for Spatial Information
(CGIAR-CSI): http://srtm.csi.cgiar.org/

Cohen, J.A., (1960). "Coefficient of agreement for nominal scales." Educational and
Psychological Measurement 20: 37-46.

Congalton, R., Mead, R A. (1983). "A Quantitative Method to Test for Consistency and
Correctness in Photo interpretation.” Photogrammetric Engineering and Remote Sensing.
49(1): 69-74.

Rosenfield, G H., Fitzpatrick-Lins, K.(1986). "A coefficient Agreement as a Measure of
Thematic Classification Accuracy." Photogrammetric Engineering and Remote Sensing.
52(2): 223-227.

Hagen, A. (2003). "Fuzzy set approach to assessing similarity of categorical maps."
International Journal of Geographical Information Science 17(3): 235.

Foody, G.M. (2002). "Status of land cover classification accuracy assessment. " Remote
Sensing of Environment, 80: 185-201.

Pontius, R. (2002). "Statistic methods to partition effects of quantity and location
during comparison of categorical maps at multiple resolutions. " Photogrammatric
Engineering and Remote Sensing.

White, R. (2006). “Pattern based map comparison. " Journal of Geographical System, 8:
145-164.

Sembolini, F. (2000b). "The growth of urban cluster into a dynamic self-modifying
spatial pattern." Environment and Planning B- Planning & Design 27 (4): 549-564.

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 175


http://reports.eea.europa.eu/tech40add/en
http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=1103
http://srtm.csi.cgiar.org/




Grinblat et al., Simulating land-use degradation in West Africa

Simulating land-use degradation in West Africa
with the ALADYN model

Yulia GRINBLATY2 Giora J KIDRON?, Arnon KARNIELI®, Itzhak
BENENSON®®

'Department of Geography and Human Environment, Tel Aviv University
2porter School of Environmental Studies, Tel Aviv University
%Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev
$Corresponding Author: bennya@post.tau.ac.il

Keywords: Agricultural land-use dynamics, Agent-based modeling, West Africa

Abstract

West Africa faces rapid population growth and subsequent demand for food
production. Despite increasing demand, local farmers still follow traditional practice
and to overcome low productivity, continuously expand cultivated areas. To
estimate the consequences of this process we developed a spatially explicit agent-
based ALADYN model of agriculture land-use in the savannah around Kita, Mali.
The model is based on the remote sensing data on the agriculture land-use in the
Kita area, Mali and field surveys there. The ALADYN simulations clearly
demonstrate that traditional agriculture is not sustainable. Even under the optimistic
scenario of declining rate of population growth, the current agricultural practice
results in including all available lands into agriculture towards 2015-2025. The
agriculture production thus reaches its maximum and from then on, every household
will experience, every 15-20 years, a period of 1-3 years during which field fertility
will be too low for allowing cultivation. Emigration will be the only way to avoid
starvation in these circumstances. The model highlights the great need for new
agricultural practices in West Africa.

1. Land degradation in West Africa

The West African environment is believed to undergo a continuous crisis due to an
excessive population pressure. According to previous studies in the region [1-4],
degradation of croplands is most extensive in Africa. Land degradation and decline
of soil fertility lead to decreasing yields and low food production in farming systems
of Sub-Saharan Africa [5], where agriculture remains the main engine of the
economical growth of these countries [6]. We investigate these processes in Mali,
where current annual population growth is close to 3% [4, 7] and food sustainability
in the nearest future may be at risk.

Since the late 1950s, production of cotton has increased immensely in West Africa
and specifically in Mali, which is today the largest producer of cotton in Sub-
Saharan Africa [4]. Cotton cultivation in Mali takes place in rotation with cereal and
groundnut. The typical cycle begins with a year of cotton cultivation followed by a
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year of cereal (sorghum, millet or corn), and an additional year of cereal or
groundnut [8]. Whereas cereal is cultivated for domestic use, cotton is planted to
provide cash, while the groundnut serves for both cash and domestic use. During
cultivation, manure and chemical fertilizers are added to the fields, however not
consistently. They are added primarily for cotton cultivation, mostly containing the
major nutrients of nitrogen (N), phosphorus (P), and potassium (K) [8].

Extensive agriculture aimed to support the constantly growing population needs
leads to low productivity of soils[9]. Soil in most parts of Mali is sandy-textured,
characterized by the lack of significant soil profile. Following wind erosion soils
may intermingle with basement rocks or indurate iron stone [10]. Given their
excessive permeability and low nutrient content, agricultural use of these soils
requires careful management [3].

In order to avoid exhaustion of the soil, farmers in Mali used to divide their land to
2-3 fields: While one is cultivated, the others are left fallow until regaining fertility.
Recent observations reveal that Malian farmers intensify land-use by reducing the
period of time that the lands are left fallow between cultivation periods, thus
decreasing an overall fraction of the fallow lands. In parallel, the use of chemical
fertilizers is still low [8, 9]. More and more lands are approaching the threshold
fertility level, below which the agriculture production becomes essentially
vulnerable [8]. The only way to ensure food production in this situation is to
cultivate the lands that are further away from the settlement and are not yet included
in the agriculture cycle.

To investigate the limits of the current agricultural practice, we have developed
Agricultural Land DYNamics (ALADYN) model and employed it for assessing soil
degradation given current population growth and agriculture practice. ALADYN
belongs to a class of spatially explicit agent-based (AB) model that explore
relationships between changes in socioeconomic parameters and changes in
landscape pattern [11, 12] and are increasingly being used to simulate land use/cover
changes [13-15]. ALADYN is based on the field research of soil degradation in Kita
area, in 2004 and 2006, and on the space borne data of the Kita area during 1976—
2004 [8].

2. Conceptual model of land degradation in Mali

Conceptual model of soil degradation in Mali was introduced by Kidron et al.
(2010). They studied the relations between the soil organic matter (SOM), the major
nutrients (N, P, K), and cotton yield and evaluated the rate of soil degradation.

Since 1960s, the CMDT (Compagnie Malienne pour le Développement des Textiles)
company controls cotton production in Mali, and supplies chemical fertilizers to
farmers. In 1981, the Malian government signed an agreement with the International
Monetary Fund and the World Bank to join the structural adjustment program that
led to a dramatic reduction in subsidies for the chemical fertilizers and immediate
reduction in their use [4, 16]. This drop further promoted the expansion to new fields
and accelerated soil degradation.

According to Kidron et al. (2010) soil fertility is defined by the amount of SOM in
soils and the threshold below which a field becomes unproductive is ca 18 t/ha.

178 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



Grinblat et al., Simulating land-use degradation in West Africa

Kidron et al. (2010) have estimated the rates of SOM degradation in the cultivated
fields and the rate of SOM restoration in the fallow field: the rate of SOM
restoration is lower than that of the degradation during cultivation. With the help of
simulation model, Kidron et al. (2010) have demonstrated that if the farmers are not
able to extend their lands, then each of their fields eventually enters the land-use
cycle characterized by the 10 - 12 years of cultivation and, then, 12 -16 years of
fallow that are necessary to restore the SOM in the field. The period of 12-16 years
is, however, insufficient for the full restoration of field’s fertility and, as a result, all
family fields simultaneously become unproductive after 25-30 years of the land-use
and the farmer is forced to leave the lands for 1-3 years, until fertility of one of them
will be regained. These results fit to Kita’s reality, characterized by gradual
expansion of the cultivated lands. This is the aim of this paper is to develop and
evaluate spatially explicit model of agriculture land dynamics in typical for West
Africa, Kita area, and to employ the model for investigating the sustainability of
traditional agriculture there. For this end, we exploit remote sensing data and data on
soil degradation and combine them within the framework of an agent-based spatially
explicit model of agriculture land-use.

3. Land-use dynamics in the Kita area during last 30 years
3.1 Site description

Our research site (~26x26 km) is located to the northeast of Kita (Figurel). The area
is characterized by geographical inter-tropical climate with a dry season and a rainy
season that makes the agriculture rain-dependent. Precipitation in the area is about
800 mm, falling mostly between May and November. The geomorphology is that of
a plain with low hills and narrow valleys. The natural landscape represents grassland
and bushes with scattered individual trees that is described as a savannah type [17].
Agricultural fields are located in the flat areas, while the rocky areas are unsuitable
for agriculture.

0 400 KM | T IMEL KTU

[TOMBOUC TOU)
.
/E R AIVER
4 S 4 )
o e FALAISE DE
HARA 8 BANDIAGARA _
S AYES WP T] -

DIAFARABEg, * meanculiine

SEaou o POEN NE;
WEITA b JENHEZEND
o

: - LA BAMAKD
ooy e 4 oy LA
"~ BURKINA

GUINEA Fie

T

I GHANA

COTE DIVOIRE

Figurel: Test site in Kita, Mali
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3.2 Analysis of remote sensing data on agriculture land-use in Kita area

To investigate the dynamics of the agricultural land-use in the Kita area we rely on
remote sensing data. The cultivation period of cotton begins with the onset of the
rainy season and continues until the first two months of the dry season. It is difficult
to detect cropland by remote sensing techniques during the cultivation period - both
because of cloudy sky and continuous vegetation cover. We therefore identified
cultivated fields with the images taken after the harvest, when the fields appear as
bare soils. Fallow fields are identified as those that were cultivated in the past but
are currently covered by savannah vegetation.

Two sets of multi-spectral satellite images were used in the analysis (Table 1). The
first consists of Landsat MSS, TM, and ETM+ images taken in 1976, 1985, and
2003, in the middle of the dry season (February and March). The second, QuickBird
image for 2004 (February), was employed for verifying the Landsat-based
classification. The Landsat images were initially geometrically corrected (L1G
product), and we further corrected them radiometrically and atmospherically.

Tablel: Characteristics of Landsat and QuickBird multi-spectral sensors

System Date Resslz)?gglon Bands
Landsat-2 MSS February 28, 1976 80m zsl\NI(F%;een, red, NIR,
Landsat-5TM  February 3, 1985 30m gWI(FE’)'“e' red, NIR,
Landsat7 March 17, 2003 30m gWI(FE’)'”e' red, NIR,
Quickbird December 4, 2004 24m Aslva(F?)lue, red,  NIR,

QuickBird image facilitates visual identification of the landscape objects that are
necessary for our research, such as individual trees, bushes or agriculture
constructions [18]. Based on the visual interpretation, we constructed a vector land-
use map for 2004, with each parcel classified as a fallow field, cultivated field, or
non-agriculture. The band features of the QuickBird and Landsat sensors are similar,
and we thus used the QuickBird signatures of fallow and cultivated fields for
supervised classification of the Landsat images.

First, we employed maximum likelihood algorithm to construct binary maps of
agricultural/non-agricultural areas. The areas classified as agriculture in any of these
maps were considered as “suitable” for agriculture and, based on three Landsat
images, three maps of land suitability for agriculture for 1976, 1985, and 2003 were
constructed. The pixel is marked as suitable for agriculture if classified as
agriculture in any of these maps (Figure 2). Vector layers of settlements and road
networks in 2003 were then overlapped with this map and served as a basis for
simulation of agricultural land-use dynamics.

Second, to distinguish between the cultivated and fallow fields we employed
Normalized Difference Vegetation Index (NDVI):

NDVI = (pnir—Pred) / (PNiRF Pred) 1)
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where p is the reflectance values in the respective spectral. The values of NDVI vary
between -1 and +1, and generally negative NDVI values characterize water, for the
bare soil NDVI values are less than 0.1, and for the vegetation greater than 0.16,
depending on the vegetation density [19].

To separate between cultivated and fallow fields we estimated the value of NDVI in
the cultivated and fallow fields that were visually recognized on the QuickBird
image and then marked at the same part of the Landsat ETM+ image. The values of
NDVI below 0.176 in the ETM+ image that was taken in February represent bare
soils, and we interpreted these areas as cultivated fields that had been harvested
short time before the image was taken. The fallow fields are covered in February by
vegetation and the NDVI value over these fields in the ETM+ image is above 0.176.
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Figure 2: Lands suitable for agriculture in Kita area, overlapped with the layers of settlements
and roads.

It is important to note that different sensors are sensitive to different wavelengths
and thus, systematic bias of the NDVI values derived from the Landsat images taken
in different years has to be corrected. According the calibration study of [20], the
NDVI from the Landsat sensors employed in 1976 (MSS), 1985 (TM) and 2003
(ETM+) can be standardized as follows:

NDVIMSS:O.924 * NDV'ETM+ +0.025 (2)
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NDVI7y=0.979 * NDVlgry. + 0.002 ©)

Applying this correction to the threshold value of NDVI as established for the
ETM+ images, we obtain the NDVI thresholds for distinguishing between cultivated
and fallow fields: 0.187 in 1976, 0.174 in 1985, and 0.176 in 2003 and obtained the
maps of three land-uses: non-agriculture, cultivated, and fallow (Figure 3).

S 1976 s 1985 - 2003

Cultivated fields Fallow fields - Nen-Agriculture
Figure 3: Classified land-use maps in Kita region, Mali, by years

We estimated the accuracy of our classification with the error matrix [21, 22]
obtained by comparing the land-use maps derived from Landsat ETM+ and
QuickBird images. The estimates of the overall accuracy and the kappa coefficient
are 82.2% and 0.703, respectively.

Figure 4 shows the dynamics of agricultural land-use and cultivated areas in Kita
region. During 1976-2003, the total area that once used for agriculture has expanded
to 28163 ha. In 1976, the share of the agricultural area was 9607 ha (or 34.1% of
total agricultural area). From 1976 to 1985, 3193 ha (11.3%), and between 1985 and
2003, 4121 ha (14.6%) were added. In contrast to the rapid expansion of overall
agriculture area, the cultivated area has increased between 1985 and 2003 by 839 ha
(2.9%).

Figure 5 presents the total cultivated area, as a fraction of the total agriculture area
and the area cultivated within three 1 km rings around the settlements. We consider
three such rings, following the fact that the average distance between agriculture
settlements in Kita is about 5 km. As for the total amount of cultivated lands, it
expanded between 1976 and 1985 by 9% and towards 2003 by 3% (Figure 5a). By
rings, cultivated area has expanded during 1976-1985, by rings, 1.4%, 9.8% and
12.6%, respectively; between 1985-2003, the cultivated area expanded in the outer
ring only (6.9%), while in the inner and middle rings the cultivated area decreased
by 7.4% and 0.9%, respectively (Figure 5b).
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Figure 5: Temporal dynamics of cultivated area during 1976- 2003: (a) of entire area, as a
percentage of the total agriculture area; (b) by rings of 1 km width from the settlements, as a
percentage of the total agriculture area.

Expansion of agriculture further away from the settlements is a strong sign of land
overexploitation and loss of fertility. In what follows we employ remote sensing data
for comparing model results to reality.

4. ALADYN model of the agriculture land-use dynamics in Kita, Mali

ALADYN, spatially explicit AB model simulates agricultural land dynamics as an
outcome of the farmer decision that regard land-use and crop choice. The model is
developed within the NetLogo modeling environment [23].

4.1 ALADYN’s overview

The model is based on the field data collected in Kita area, Mali in 2003 and 2005
[8]. The Kita area (26x26 km) is represented in the model by 30x30m grid. Each
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grid cell is described by island-use. Land-uses are of six types, three of which are
non-agricultural - settlements, roads, and lands unsuitable for agriculture, and three
agricultural - virgin fields, cultivated fields and fallow fields. In the Kita area, the
average distance between settlements is ca. 5 km. We thus assume in the model that
the fields of each farmer are at a distance of up to 3 km from the settlement. The
amount of agricultural land at up to 3 km distance is that considered as its
agricultural capacity.

Settlement’s population consists of farmers and grows at a rate defined by the model
scenario. If the settlement’s population exceeds settlement’s capacity for agriculture,
new farmers migrate to the other settlements. If all settlements are full, new farmers
can establish a new settlement at a point located at 3 km or further from any of the
existing settlements. The fertility of the agriculture lands is characterized in the
model by amount of SOM.

4.2 Objects and agents in ALADYN

Settlement is characterized by location of its center (as a cell), initial number of
farmers and population growth rate.

Field is spatially continuous set of land cells and characterized by the distance to the
nearest settlement and the amount of SOM.

Farmer belongs to the settlements, possesses fields and cultivates cotton or crop
there. In the beginning of the agriculture season, the farmer decides on the future
land-use of each of his fields: whether it will be cultivated and with which crop. The
farmer decides to cultivate the field if the amount of SOM is above the threshold
level, otherwise the farmer will leave the field for fallow.

4.3 ALADYN structure

The ALADYN model consists of four main modules: Initialization, Agriculture,
Prognosis and Demography (Figure 6). After the Initialization is performed, the
major loop is repeated until the end of the modeled period (60 year in this paper).
Model time step is one year.

Initialization module: Settlements are populated by farmers. The initial number of
the farmers in the settlement is established as 60% of their number in 2003, the latter
available from Kidron et al. (2010). This estimate is based on remote sensing data,
according to which about 60% of the 2003 agriculture area was cultivated in 1976.
Each farmer obtains two fields, each 1 ha in size, within a distance of 3 km from the
settlement. One of the fields is set as being used for agriculture and the other left for
fallow.

Each cultivated field is randomly assigned the number of years from the start of the
period of cultivation, between 0 and 11, and each fallow field is randomly assigned
the number of years from the start of the fallow period, between 0 and 17. Initial
amount of SOM in the cultivated and fellow fields depends on a year within the
cultivation cycle/period of the fallow. We assume that the amount of SOM in the
beginning of the cultivation period is maximally possible 43 t/ha (Kidron et al,
2010), while the amount of SOM in the fallow field in the beginning of the fallow
period is 18 t/ha. Then we apply formulae (4) — (6) of the Agriculture module below
in respect to the initially assigned year of the cultivation or fallow.
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Figure 6: Basic blocks and processes of the ALADYN model

Agriculture module: The model simulates cotton and cereal production, by fields.
The field status (cultivated/non-cultivated) and the amount of SOM in the soil are
updated every year, during the years of cultivation in respect with the crop choice of
the farmer. Based on Kidron et al. (2010), the decrease of SOM during cultivation
and its increase during the years of fallow are described by linear equations:

SOM decline during a year of cotton cultivation

SOMy,4(t/ha) = SOM+(t/ha) — 2.38 4)
SOM decline during a year of non-cotton crop cultivation

SOMr.4(t/ha) = SOM(t/ha) — 1.19 (5)
SOM restoration during a year of fallow

SOMr.4(t/ha) = SOM(t/ha) + 0.963 (6)

where T denotes time in years.

The initial amount of SOM in the cultivated/fellow field depends on a year within
the cultivation cycle/period of the fallow. This year is assigned randomly between 0
and 11 for the cultivated and between 0 and 17 for the fallow field. The SOM level
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for the cultivated field is then assigned according to equations (4) and (5), assuming
that in year 0 the amount of SOM is 43 t/ha and the cotton is cultivated. The initial
amount of SOM in the fallow field is assigned according to equation (6), assuming
that in year 0 the level of SOM is 18 t/ha. As shown below, 12 years is a typical
length of the cultivation and 18 years of the fallow period.

Prognosis module: Based on the amount of SOM in the soil, the farmer decides
whether the field will be cultivated next year. If the amount of SOM decreases
below 18 t/ha, the farmer leaves it for fallow. | f not, the farmer decides on the
future crop. The amount of SOM in the fallow field is restored according to equation
(6); the field can be exploited again if the SOM exceeds 25 t/ha.

Demography module: The rate of the population growth depends on the model
scenario. Below we consider two scenarios — of constant 3% annual growth rate and
of the growth rate that linearly declines during 60 years from 3% to 1% per year. In
the course of a time, population in each settlement may exceed its capacity. In this
case, new farmers attempt to migrate to the one of the existing settlements. If all
existing settlements are full, new farmers may establish a new settlement. The latter
happens if Kita agricultural area still contains virgin lands that are suitable for
cultivation at a distance of 3 km or more from the existing settlement and is
accessible by existing roads. In this case, each farmer is assigned two 1 ha fields,
adjacent to each other, as close as possible to the new settlement.

According to the visual inspection of the QuickBird image, minimal number of
households in Kita settlements in is six. We thus assume that a new settlement can
be established if the virgin area suffices for at least six farmers. When all agriculture
land is occupied, new farmers emigrate out of the system.

We consider land-use dynamics at annual resolution and investigate scenarios for
60-year period, 1975-2035. Parameters of the ALADYN model are represented in
Table 2.

Table 2: Parameters of the ALADYN model

Parameter Default value
Length of cultivation cycle 3 years
Amount of SOM in a virgin field above 43 t/ha
Cultivation starts when SOM is above 25 t/ha
Cultivation stops when SOM is below 18 t/ha
Overall area of farmer’s fields 2 ha

Population of a settlement in 1976 (as a percentage of

0
settlement’s capacity in 2003) 80%

Model GUI is presented in Figure 7.
In what follows, we employ ALADYN for investigating dynamics of the agriculture
land-use in Kita under two different scenarios of the population growth.
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Figure 7: Interface of ALADYN model

5. Analysis of ALADYN results
5.1. Basic scenario of agriculture land-use dynamics in Kita

The basic ALADYN scenario employs the parameters presented in Table 2 and
assumes constant 3% rate of population growth. The dynamics of SOM in the fields
of a single farmer are presented in Figure 8. As can be seen, after the first 40 years,
the amount of SOM in the farmer’s fields stabilizes and varies between 15-25 t/ha.
During 60 years, three periods of infertility of 1-3 year length are observed.

Figure 9 presents the model dynamics of agriculture and cultivated area over the
entire Kita area as percentages of total agricultural area and three experimental
points estimated according the satellite images. As can be seen, agricultural area
expands until 2015 and then stabilizes; the cultivated area reaches maximum
towards 2001, and then slightly declines. Towards 2035, more than half of
agricultural land is left for fallow.

Generally, the cultivated area increases until ~2000 and then slowly declines; as it
can be expected, the dynamics of the cultivated lands differ at different distances
from a settlement (Figure 10a). ALADYN makes it also possible to estimate the
fraction of farmers that cannot cultivate their fields due to soil degradation (Figure
10b).
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Figure 9: ALADYN dynamics of agricultural and cultivated area in Kita during 1975- 2035,
for the basic scenario of 3% population growth, as percentages of total agriculture area with the
experimental data superimposed
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5.2. Sensitivity to the population growth rate

While the current annual population growth rate in Mali is about 3% [4, 7], the UN
prognosis is that in 3-5 generations the growth rate in developing countries, like
Mali, will decrease to 1% [24]. We thus consider an additional scenario, in which
population growth rate decreases, linearly, from 3% to 1% during 1975 — 2035
(0.0333% decrease per year).

Figure 11 presents overall land-use dynamics in Kita for these two scenarios. As can
be expected, they are both characterized by overexploitation of the agriculture land.
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Figure 11: ALADYN dynamics of the total agriculture and cultivated area in Kita during 1975-
2035, as percentages of the total agriculture, for two scenarios of population growth rate, 3%
(black curves) and 3-1% (gray curves).

The same is true for the land use dynamics at different distances from a settlement
(Figure 12). In both scenarios, towards 2015, about 20-25% of the farmers should

leave the area.
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6. Discussion

Soil degradation in West Africa is a known phenomenon, resulting in a substantial
decrease of crop yield per hectare in the second half of the 20™ century [25]. In
Niger for instance, sorghum and pearl millet yield per hectare decreased respectively
by 62% and 12% from 1960 to 1999 [26]. At the same time, all researchers report a
sharp increase in the cultivated land during the last decades. Thus, according to Fox
and Rockstrdm [27] only 40% of the land was cultivated in the Yetenga region of
northern Burkina Faso in 1973, while by 1996 it reached 80%.

High population growth rate is the main reason of the sharp increase in cultivated
land in West Africa. However, local factors may also contribute to this phenomenon.
The 1982 decision of the Malian government to stop subsidizing the chemical
fertilizers caused a sharp decrease in their use, and the farmers preferred to clear
virgin soil for cultivation, which in turn substantially increased the cultivated area
[28, 29]. Additionally, the use of marginal fields [25] further enforced increasing
soil degradation [30]. Lack of available agriculture lands resulted in an increase in
the cultivation period of the fields and reducing fallow period [28, 31]. The
researchers agree that the current practice of agriculture and high level of soil
degradation do now allow to decrease the size of the field or duration of fallow
period. This, in turn, limits the options for the new farmers.

Taking the Kita area as an example, we explore the dynamics of agriculture land-use
with the ALADYN model. In agreement with other publications that regarded SOM
as a key proxy for soil degradation [32-34], our model was based on the SOM decay
during field cultivation and restoration during the fallow period. The amount of
available land in Kita area was estimated based on the satellite data (from 1976,
1985 and 2003), which show steady increase in the agricultural land from 1976 to
2003 in agreement with other reports from other regions in Africa [27]. The
potential use of fields which are close to the existing settlements is no longer
relevant as these fields are already fully exploited towards 1985. This outcome is in
agreement with the FAO (2010) report, according to which, since the 1990s, cotton
yields have declined, while agricultural area has expanded.

Assuming that the current agricultural practice will continue, ALADYN predicts a
substantial increase in the fallow fields and a reduction in the cultivated areas, no
matter if the population growth rate will remain at a current level or decrease in
accordance with the UN forecast. Depending on the scenario, towards 2015-2025,
the system will reach a persistent level of production, when less than 50% of
available agriculture lands is cultivated, and the production is 20-25% lower than
maximally observed. Once in 10-20 years each household should pass a 1-3 year
period when all their fields are non-productive and this poses an extra burden on the
economical wellbeing of the farmer household. Decrease in population growth may
decrease the pressure but does not provide, by itself, a solution. While the overall
agriculture lands is growing slower, the cultivated lands and, thus, agriculture
production, remains at the same level as obtained in the model for constant 3%
population growth. As a result, the fraction of farmers that are not able to cultivate
their fields every year remains about 20-25% starting from 2015.
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In agreement with previous reports [3], our model simulation indicates that current
agricultural practice in Mali will not suffice to sustain the population. Development
of the infrastructure by building roads may alleviate the situation by facilitating the
expansion of more agricultural land. In addition, the adaption of new cultivation
methods is called for.
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Abstract

Cellular automata (CA) models are increasingly applied for simulating land-use
change in urban areas. However, in areas with strongly mixed land uses, like
Flanders, Belgium, different types and intensities of human activity occur within a
single dominant land use. This is in conflict with the discrete and dominant land-use
states applied in CA. The direct modelling of the intensity of activities (population
density and employment in different sectors) within a CA grid environment is an
interesting alternative to model mixed and multifunctional land use.

In this research, an activity-based cellular automata (ACA) model, developed by
White et al., will be further enhanced, applied and calibrated for Flanders. It also
uses a variable grid approach: linking with a regional model is not necessary because
the neighbourhood is expanded to the entire modelling area. The model should be
able to cope with the complex multi-nodal structure and messy morphology of
Flanders, typified as it is by multifunctional land use and diffuse, fragmented urban
development strung out along roads.

In this paper we firstly show the results of a robustness analysis carried out to
investigate whether the model behaves as expected under extreme circumstances.
Secondly we propose a method to compute and store distances between cells in the
variable grid ACA. This calculation should be based on the existing transportation
network rather than on simple Euclidian distances applied in classical local CA
neighbourhoods.
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Introduction

Classical CA, like other land-use change models, have strictly discrete land-use
categories — one cell is in one state. Regions with mixed land uses, like Flanders,
Belgium, however are better served by a model with distinct activities (population
and economical activity per cell) instead of fairly abstract land-use types. Population
and jobs can indeed grow gradually within most types of land uses even when the
dominant land-use does not change. Many applications focusing on economic and
environmental problems will also benefit from more detailed information on the
location of activities. Multi agent systems (MAS) can predict direct interactions
between actors but are not useful for large regions as they are computationally slow
[1]. Therefore activity-based cellular automata (ACA) can be a solution to model the
interactions between multiple types of activity, and between activities and land uses
[2, 3]. As such, population and employment levels and their associated land uses can
be predicted at a high spatial resolution.

Another problem is that long distance spatial interactions are not covered by
classical CA models. Therefore CA models are usually linked to a spatial-interaction
based model representing dynamics among larger administrative regions [4, 5]. This
strategy leaves a number of problems unsolved: (1) intermediate spatial scales are
not represented, (2) to calibrate and couple both models, additional parameters are
needed, and (3) the regions are compacted into their usually unrepresentative
centroids [3]. The expansion of the neighbourhood to the entire modelling area,
using a variable grid approach, can be a good solution [6, 7]. It uses rings of “super-
cells” which become increasingly larger for longer distance interactions. Each
super-cell of level L consists of 9 (super-)cells of level L — 1, and of 3% cells of
the basic grid (“unit-cells”).

In the next section we will describe the ACA model upon which this research is
based. This model is being applied to, and calibrated for, Flanders, Belgium. Further,
we will discuss some general data collection and application issues dealt with in
the early stage of this research. Next, we will report on a robustness analysis of the
model carried out for a sub-region centred on Antwerp. Finally, we will describe
some possible approaches to work with transport network distances in the variable
grid CA instead of simple Euclidian distances.

A multiple activity-based cellular automaton

A schematic representation of the ACA model used in this research and developed
by White et al. [3] can be found in figure 1. Some land uses are associated with an
activity: e.g. residential land use is associated with population. Each land use can
host several activities, but the associated activity is considered the primary activity
and other activities present on the cell are secondary. Land uses not associated with
an activity are considered to be their own primary activity (e.g. the primary activity
of a forest cell is forest), but they will generally also host secondary activities (a
forest cell may also house people). For each activity K, the proportion qxto be
located as primary activity (i.e. on the associated land use) is calibrated. The rest of
the activity proportion (1 — qx) will be located on other land uses as secondary
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activity. Compatibility factors between activities and all land uses are calibrated to
this effect. To calculate transition potentials for land uses and associated activities,
the neighbourhood effect of all activities and land uses on all activities, as well as
several other factors are needed. The latter include: the zoning status and suitability
for each activity, an accessibility measure, a random factor and a diseconomies of
agglomeration factor accounting for high land costs and congestion in densely
settled areas. The activity potential is calculated as:

VKi =1 ZKi RKi SKi Nki (1)

with V; the activity potential for activity K on cell i, r a random perturbation, Z;
the zoning status for activity K on cell i, Ry; the accessibility measure for activity
K on cell i, Sk the suitability of cell i for activity K, and finally N; the
neighbourhood effect. The random perturbation r, representing the stochastic
component of the model, is generated as:

r=1+ (- In(rand))* 2

with rand a uniform random variate and o. a parameter that controls the skewness of
the function. Next, land-use transition potentials are calculated as:

VTKi = DKi (VKi)™K +1Ki  (3)

with VTKi the land-use transition potential for activity K on cell i, DKi the
diseconomies factor, mK a parameter to be calibrated and IKi the inertia value for
activity K on cell i. Briefly, the transition process can be described as follows [3]:
for each cell, transition potentials for different land uses are ranked, and then all
cells are ranked on the basis of the highest value for each cell. Starting with the
highest ranked cell, each cell is assigned the land use for which it has the highest
transition potential until the demand for the particular land use is satisfied and no
further cells are assigned to that use. Next, for each cell with a land use
corresponding to an activity, primary activity is allocated in proportion to the cell’s
activity potential. Finally, secondary activities are allocated proportionally to
activity potentials, as adjusted in accordance with the compatibility factors.
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Figure 1: Scheme of the activity-based CA model.

Application of the ACA model to a test area in Flanders

Several problems arose when applying the model of White et al. [3] to Flanders.
Firstly, applying an ACA model at a 1 ha resolution for an area as large as Flanders
(1,350,000 ha) is computationally heavy given the number of runs required for
calibration and validation. Therefore we developed and tested a preliminary model
on a region centred on Antwerp, in the central northern part of Flanders, consisting
of Antwerp province and the neighbouring arrondissements of Sint-Niklaas and
Dendermonde to the west (East Flanders province) (Map 1). This test area was
chosen because its mix of activities and land uses are representative for Flanders as a
whole and because extra data sets, including remote sensing products, are available
that could be useful for solving a second problem, namely the lack of activity data at
the detailed spatial resolution of the model.
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Map 1: Location of the test area around Antwerp within the targeted modelling area (Flanders
and Brussels) and Belgium.

Good input data on the distribution of activities are indispensable for the appropriate
functioning of the ACA model. Population and employment numbers for different
economic sectors are needed for every cell, yet data are only available from official
sources on an aggregated level (municipalities or statistical sectors). Dasymetric
mapping, a multiple regression based spatial allocation technique, is applied on the
aggregated data with a view to obtain the required cellular representation. In this
approach, the individual cell (activity) values are the dependent variable, while
other, known, cell-based geographical data (e.g. land use, distance to city centres)
are used as independent variables [8, 9]. So far we have used a simple dasymetric
mapping technique with only the input land-use map of the model as the
independent variable. An improved dasymetric mapping is an important research
goal at a later stage.

In our research we make use of a 10 m resolution land-use map of Flanders for the
year 2010 with 45 land-use classes, developed by VITO [10]. For the initial
modelling work described in this paper we rescaled the cells to 1 ha entities and
grouped the land uses into 9 classes: two activity-driven land uses (the residential
urban fabric associated with population, and the industrial and commercial areas,
associated with employment in all economic sectors), two area-driven land uses
(protected nature and agriculture), two passive land uses (unprotected nature
and other, a rest category), and three static land uses (recreational areas,
infrastructure and water). The resulting initial land-use map is shown in Map 2.
Zoning maps, physical suitability maps and transport network maps were available
from earlier studies [11]. Forecasted population and employment trends for the
Belgian arrondissements, obtained from the Federal Planning Agency, were used
as future total activities. In the absence of a second land-use map, the model was not
historically calibrated on the past, rather run forward from 2010.
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Map 2: Actual land use around Antwerp in 2010. Industrial and commercial areas (black),
residential urban fabric (dark grey), protected nature (medium grey), agriculture (light grey),
and static and passive land uses (white).

Robustness analysis

The goal of a robustness analysis is to find out whether the model behaves as
expected under extreme circumstances. Four scenarios were tested: (1) a strong
decrease of built-up categories, followed by a strong increase (or vice versa), (2)
atypical neighbourhood rules for residential activities, (3) major influence of
railways on the accessibility for the residential activity, and (4) a very strong random
perturbation. The scenarios were run until 2025 or 2040, depending on whether a
longer run still made a big difference or not.

When the built-up land use strongly decreases (scenario 1), only the centres of the
cities remain as residential urban fabric which seems to be a logical result. However,
forecasting industrial and commercial land use based on its associated activity
(number of employees) does not always lead to good results. In the port area of
Antwerp for example, the number of workers per cell is quite limited. In the case of
a shrinking industrial sector (even for a small decrease), the model tends to eliminate
port cells prior to other industrial cells, thus ignoring the huge economical
importance of the Antwerp port (Map 3, top). When the amount of built-up area
increases again, the port returns to its original location because the zoning map
prevents the area from becoming residential. The residential urban fabric grows
mainly around existing cities, which is logical. Smaller villages near the model
edges, however, do not return (Map 3, bottom).

200 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



Crols et al., An activity-based CA model for Flanders, Belgium

Map 3: Predicted land use around Antwerp in 2025 for an extreme decrease of urban areas
scenario (top), followed by an extreme increase in 2040 (bottom). Legend as in map 2.

In scenario 2 atypical neighbourhood rules for residential activities were tested. A
negative weight for residential activity at medium distance from residential areas
was assumed. After an unstable period lasting some years, this results after 15 years
into a spatial configuration consisting of new cities, interspaced by a given distance
(Map 4). This again is what could be expected.

In the third scenario, raising the influence of the accessibility parameter determining
the impact of railways on residential activity did not have a strong effect on the
results obtained. With standard neighbourhood rules and average diseconomies of
agglomeration, the interaction rules seem to dominate the accessibility parameters.
Only in the case of low diseconomies of agglomeration, low inertia values for all
land uses (especially natural categories) and in the absence of a zoning map, growth
of new residential urban fabric is a little bit stronger near towns situated in a buffer
zone around railways (Map 5). In general however, we can conclude that
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accessibility parameters in the current model seem to have an insufficient effect This
is one of the arguments for including network accessibility directly into the
neighbourhood rules, as discussed in the next section.

4%

Map 4: Predicted land use around Antwerp in 2025 if residential activity repels itself at medium
distances. Legend as in map 2.

Map 5: Predicted residential land-use change around Antwerp in 2040 with a high railway
accessibility parameter and a zero value for other accessibility parameters. Areas that remain
residential urban fabric from 2010 to 2040 (light grey), new residential areas in 2040 (black),

railways (dark grey lines).

Finally we tested the impact of a high random perturbation effect (see equation 2) as
part of scenario 4. Extreme random perturbation (values for a > 55) results in
numerical instability. For values just below this critical value, new residential urban
cells are mainly found scattered in agricultural zones, and also in a concentric zone
at a certain distance around Antwerp due to the diseconomies of agglomeration
effect (Map 6). This is as could be expected. As in scenario 1, the port area
disappears because the employment activity values get too low.
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Map 6: Predicted land use north of Antwerp in 2040 with a high random perturbation. Legend
as in map 2.

Calculation of distances in the variable grid model

To calculate the neighbourhood effect, distances between the central cell and the
other cells in its neighbourhood are needed. These distances should be measured
over a transport network if we want to approximate as closely as possible real spatial
interactions. It may even be better to use the relative time needed to travel between
cells. However, a classical CA neighbourhood consists of a limited number of
immediate neighbouring cells, hence, simple Euclidian distances are generally used.
For example, the Spatially-Dynamic Land-Use Model for Flanders (RuimteModel
Vlaanderen) has a circular neighbourhood of eight 100 m cells [11]. Hence, distance
(or time) between the central cell and its neighbours is so small that the error made
by using Euclidian distances is negligible. Moreover, the application of a cell-based
accessibility measure to the central cell in the transition rule, is correcting for
potentially over- or underestimated access to the cells in the neighbourhood.

In the variable grid environment dealing with distance based interaction gets more
complicated though [6]. Distances are now needed between the central cell and the
centre of each super-cell in its neighbourhood, extending to the entire modelling
area. Thus, using the classical Euclidian approach may introduce substantial errors.
On the other hand, the calculation of network distances between all cells of the
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modelled area is computationally very intensive, and/or requires the storage of large
distance matrices.

It is therefore a goal of our research to develop a “time-distance model” representing
network distances with a minimum of (re)computation during the simulation. The
chosen method should enable predicting anisotropic urban growth patterns
depending on the integral accessibility between cells, rather than the opening up of a
cell by the nearest links of the transportation system, as represented by the
accessibility factor in the model. Possible methods include “detour factors” per
region (and/or distance length class), and the storage of a distance matrix between a
number of important major transportation nodes (or centroids of aggregated cells). A
“detour factor” is a coefficient calibrated for a specific region that is multiplied
with the Euclidian distance to approximate real network distances [12]. The use of a
simple detour factor for the entire modelling area has no sense. We are only
interested in relative distance (or time) differences, and such a factor would not
change them. A different factor for different regions and/or distance length classes in
the model could work but has also some disadvantages. Firstly, in a large region
with mixed land uses like Flanders, it will probably be much more difficult to find
appropriate factors than in single cities or in large rural areas. Secondly, if we would
divide Flanders into a lot of sub-regions with different detour factors, this still
implies the storage of a large set of factors. The method would therefore hold little
advantages compared to storing a network distance matrix directly.

Figure 2: Neighbouring cells of level 0 through level 3 around a unit-cell in the variable grid
approach.

Storing matrixes of network distances could be done in several ways. Distances
between all cells are not needed, rather, the model requires distances between a unit-
cell and the centres of all its super-cell neighbours. For a model at the 1 ha
resolution, the total area of Flanders can be covered by variable grid (super-)cells
ranging from level O until level 7, meaning 8 levels times 8 (super-)cells of each
level around a centre level O cell (unit-cell) (Figure 2).

Additionally, Euclidian distances could still be used for levels 0 and 1, as these
distances are in the same range as the ones in classical CA neighbourhoods (e.g. the
RuimteModel Vlaanderen). For larger distances (L > 2), we need the average time
between points on the network, as close as possible to the centre of the cells. If there
is no network point within the cell, a time according to a very low speed should be
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added to reach the cell. To implement and test this new approach, we will initially
assume average speeds per road type, and replace them later by speeds taking into
consideration local conditions including congestion.
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Map 7: Roads and land use northeast of Antwerp with a 900 m grid background. Motorways
(thick black lines), major roads (medium black lines), minor roads (thin black lines); built-up
areas (dark grey), agriculture and protected nature (light grey), other land uses (white).

Still, storing all travel times from every unit-cell to its super-cells (L > 2) would
involve a lot of data. However, the time-distance from a unit-cell to a super-cell in a
particular direction would in general be very similar to the time-distance from a
neighbouring unit-cell to its corresponding super-cell in the same direction. This
idea is also supported by the concept of a detour factor calibrated for very small
regions and different distance length classes. Hence an efficient solution could
consist in defining a regular grid of level 2 super-cells (a 900 m grid cell in our
model as the unit-cell resolution is 100 m) — we will call this the stored distance grid
— and calculating and storing time-distances between the centre unit-cell (L = 0) of
each 900 m grid cell and the centre unit-cells of all its neighbouring super-cells (L >
2). All the other unit-cells within this 900 m grid cell can then make use of these
stored time-distances.

However, not every 900 m grid cell is connected to the road network (Map 7) and
the nearest point on the network will not always be representative for larger super-
cells if they are highly urbanised. Therefore we will experiment with different
distance models: we can make use of the nearest major transport node to the centre
cells, or just the nearest point on the network. We have to evaluate whether these
models tend to over- or underestimate actual travel times.
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Finally, we have to define a relationship between the distance used in the
neighbourhood rules themselves (expressed as a level of super-cells L) and the
calculated times T. In the current ACA model, the level L that has to be used can be
calculated from the Euclidian distance D (in m) and the cell resolution R (in m):

L=logs(DR)  (4)

In this research R = 100 m. Then the level L in the variable grid that has to be used,
according to the calculated time-distance T is:

L= LG + |Og3(T/TG) (5)

with Lg the level of the stored distance grid (2 in this research) and Tg the time
needed to travel the width of one cell of the stored distance grid at a local travelling
speed.

Conclusions

In this paper we discussed some critical issues related to the implementation of the
activity-based cellular automata (ACA) model proposed by White et al. [3] for
Flanders. Results of an ACA model at a high spatial resolution (1 ha) can be
instrumental to explore future states of the Flanders region, characterised as it is by a
large variety of built-up areas with mixed land uses. The modelling of activities at
high resolution will also be of great value for several socio-economic and ecological
applications [3].

Several problems remain to be solved: running a complex model for a large region
like Flanders is computationally demanding. An efficient implementation is
therefore required. Also, a better method is required to disaggregate activity input
data to the resolution of the model.

The results of a robustness analysis discussed in this paper are promising as most
model components behave in line with the expectations. However, network
accessibility should be incorporated into the model in a more realistic way.
Alternative methods were discussed to compute or store network distances outside
the time-loop of the ACA model in an effective and computationally efficient
manner. The storage of a network time-distance matrix will probably be the best
solution. The method discussed will be implemented in the next phase of this
research.
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Abstract

Urban growth has been the subject of several studies in recent decades. Many
studies is dedicated to the issue of segregation and production of peripheries in
cities. Peripheral growth is understood as the socio-spatial phenomenon that occurs
at the edges of the interface between city and natural environment (or rural),
distinguishing two types of urban fabric expansions: the peripherization, related to
occupations for residential use of low-income populations; and closed urbanizations,
related to residential use production oriented for higher income groups. Considering
that formal structure of physical space and society are closely interrelated, this
investigation addresses the issue from urban morphology. Studies with
morphological approach, though techniques and tools of modeling and GIS support,
have used the cellular automata technique for urban growth simulation, assisting the
production of knowledge about their processes and their dynamics. In this way, this
paper aims to identify relationships between urban morphology and dynamics of
peripheral growth, assuming operational hypothesis of the association of periurban
spatial patterns with indicators of urban facilities concentration and buildings
densities, with features of natural environment and socioeconomic similarities of
neighborhoods. In order to demonstrate the procedures for peripheral growth
simulation from the model implemented in software CityCell, we propose an
exploratory case study in a medium-sized city in southern Brazil: Pelotas. The
results demonstrate the importance of considering aspects of city and natural
environment in an integrated way, as well as neighborhoods that can attract types of
consumers, allowing the simulation of peripheral formation for future scenarios.

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 209


mailto:3kicotoralles@gmail.com
mailto:4marcus.saraiva@gmail.com
mailto:5mauricio.polidori@terra.com.br

Toralles et al., Modeling and simulation of periurban dynamics

Introduction

In recent decades, studies about urban growth have drawn models and theories about
socio-spatial phenomena in order to represent and interpret inherent logics of the
configuration of cities and their dynamic processes. One of these phenomena is the
peripheral growth, which consists of urban fabric expansions in the edges of
interface between city and the natural (or rural) landscapes, primarily for residential
use, in a rapid dynamic of interaction and conversion of natural areas in urban
ground. This phenomenon is associated with urban segregation problem and we can
detach two peripheral types in Brazil: a) peripherization, related to concentration of
low-income population [1], b) closed urbanizations, related to residential nuclei for
high-income population [2] (including those that are not closed). From this reality,
urban growth and natural environment changes have been understood as the greatest
challenge to humanity for the XXI century [3].

With the computing development and increasing expansion of its storage capacity
and data processing, and the development of geographic information systems (GIS),
were possible advances in studies about related processes of urban phenomena.
Efforts on urban modeling and simulation, with morphological approach and using
the cellular automata technique enabled the incorporation of environmental,
socioeconomic and politic dimensions in urban models [4-5]. These are important
advances on spatial and temporal representation to modeling urban dynamics,
increasing the use of models and simulators as scientific instruments.

In this way, the goal of this research is identify relationships between urban
morphology and the dynamics of peripheral growth phenomenon, aiming to capture
patterns that are related to the fabric production of these two peripheral types. From
this, the relationships are translated into an urban growth model implemented in a
software called CityCell [6-7], enabling the periurban growth simulation. The study
assumes an operational hypothesis related to the association of periurban spatial
patterns with indicators of urban facilities concentration and buildings densities,
with features of natural environment and with socioeconomic similarities of
neighborhoods.

Thus, this work starts presenting morphological characteristics of the peripheral
types studied. Then we provide a brief theoretical review of urban models, urban
modeling and the cellular automata technique for urban dynamics simulation. After,
we present the urban growth model implemented on CityCell and their procedures to
simulate the peripheral growth through an exploratory study applied to the case of a
medium-sized city in southern Brazil: Pelotas.

Morphological characteristics of peripheral formations

Urban growth and peripheral nuclei formation, for high or low income population,
have been observed in cities of different sizes in all Earth regions. In developed
countries this phenomenon of peripheral growth is understood like urban sprawl [1],
as the suburbs and edge cities. In underdeveloped or developing countries we also
found similar formations to urban sprawl, such as the closed urbanizations.
However, in these countries, peripheral growth phenomenon is mainly related to the
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peripherization process, generating nuclei with concentrations of low-income
population. In addition to income factor, there are other factors which characterize
these peripheral types. We posted here those related to morphological dimension in
the Brazilian case.

Closed urbanizations is associated with the movement of elites from center towards
the periphery [1] and may be characterized by: auto-segregation (looking groups
with similar income levels and prevent different groups) [8-9-10]; diffuse and
decentralized pattern in relation to central business district (CBD) [9]; occupy large
urban areas [1]; low population densities [1-9]. Low income nuclei are more
numerous and can be characterized by: buildings concentration (small, but close
each other) and larger population densities; occupy areas close to natural landscape
structures which are restrictive to urbanization [2-8], the dynamic of nuclei growth
occurs through expansion by successive additions of similar types, in a continuous
increase of occupations [1-11]. These morphological features, related to dynamics
and production patterns of peripheral urban fabric, help to compose the operational
hypothesis and the model procedures, which will be seen throughout the text.

Modeling and simulation: using cellular automata to urban dynamics studies

Urban modeling is the process of translation of urban theories into mathematical
models, tested through experiments and simulations in computational environment,
which functions as a laboratory [5-12]. The model objective should lead to choice
the appropriate methodology for its construction, not vice versa [13]. Thus,
according to its goal, models may have different representation, descriptive systems
and technical approaches.

One representation type used to understanding the urban morphology configuration
is the cell grid, representing the surface like a matrix or a lattice of evenly spaced
points, favoring the neighborhood contextual relationships and integrating Euclidian
approach to the Leibnitzian [14]. This type of spatial representation allows complex
data to work in spatially homogeneous way and it's one of main features of cellular
automata models.

CAs are objects of a computational cellular universe whose characteristics change
systemically from simple rules, depending on neighboring objects characteristics
[15-16]. The possibility to simulate systemical processes which local actions
(neighborhood) generate reflections in global order allows incorporate complexity in
modeling [15].

Portugali [16] defines the self-organization as one of the fundamental properties of
complex systems, being a phenomenon that occurs when a system organizes its
internal structure independent of external causes. To Johnson [17], in a similar
manner, the complexity is in these systems that adapt through an emergent behavior.
When a system has multiple components interacting dynamically in different ways,
following local rules and without any perceived higher-level instruction, there is
complex behavior. When these local interactions generate a pattern that can be
perceived in macro scale, there is an emergent behavior. From it, is formed a self-
organization network, with different components creating order without
deterministic intervention and creating a system that emerges from the bottom-up.
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CA models are able to replicate complex behaviors and self-organizing patterns of
spatial phenomena. Thus, the results of simulations can be similar to real cities
morphology, allowing construction of future scenarios [3].

Currently there are several CA models in use for urban applications. Most of them
are proposed as a scientific tool for academic use. These are some examples of
models used to simulate the land use changes or urban growth [5-12-18]: Dinamica
EGO, developed by the Remote Sensing Center of Federal University of Minas
Gerais (UFMG); Metronamica, developed by Research Institute for Knowledge
Systems (RIKS); and SLEUTH, developed by the U.S. Geological Survey's Urban
Dynamics Research Program (USGS).

CityCell: the urban growth simulator

To simulate urban growth, focusing on peripheral growth, this study uses a software
called CityCell - Urban Growth Simulator, developed by the research group of
Urbanism Laboratory (LabUrb) at the Federal University of Pelotas (UFPel) [7].
CityCell has incorporated the SACI - Simulador do Ambiente da Cidade (City
Environment Simulator) [18], that is a dynamic urban model, which integrates CA
and GIS; considers urban, natural and institutional attributes; and simulates urban
growth through centrality and potential measures - adapted by Polidori [18] from
Krafta [19] studies - and accumulated resistance (or constrictions) to urbanization.
According Polidori [18], the urban planning has traditionally worked with isotropic
environments, separating the city and nature. While many urban models have efforts
to represent the city only by its effectively urbanized area, ecological models have
difficulties to include the influence of cities, often treated as static and deterministic.
The model incorporated in CityCell recognizes the need to overcome the isotropic
approaches to study expansion of cities, considering urban and natural attributes.
City and the nature are modeled in computational environment support by CA,
graph theory, geotechnologies and adaptive modeling (allowing adjustments by user
and input data according to the objective of study) [18]. Thus, the model enables to
explore future scenarios by directing urban growth in order to make speculations
about possible morphologies and approaching real cases.

As model input data, are chosen spatial variables that are considered relevant to the
process under study. They are linked to system cells and called attributes, which can
be classified as: a) natural, which describe the environment undeveloped; b) urban,
describing the urbanized environment; c) institutional, representing plans and
policies that are capable to intervening in the urban growth process. Attributes are
elements that can generate tensions of attraction or resistance to urbanization that be
relevant to simulate the dynamics of changing reality.

Tensions are abstractions associated with various types of flows (energy, people,
vehicles, information) and represent investments in actions or modifications of
space. In model, the city is reproduced from the distribution of five different types of
tensions (Figure 1): a) axial, along paths or axes; b) axial buffer, around the paths or
axes; c) polar, around nuclei; d) diffuse 1, randomic distributed, inversely
proportional to its centrality and environmental resistance, and associated with
formal production of high-income population (closed urbanizations); e) diffuse 2,
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distributed randomly and also inversely proportional to its centrality, but directly
proportional to environmental resistance and are associated with informal production
of lower-income strata (peripherization).

A B I Lic D E
Figure 1: CA diagrams representing the types of tensions [18]: A) axial, B) axial buffer; C)
polar; D) diffuse 1, E) diffuse 2.

The logic used in the model follows the understanding that centrality measure
(considered an indicator of urban facilities) is able to describe potential change of
urban space, creating locational imbalance in the system [20]. High values of
centrality suggest areas of interest, movement and urban value, while low values
indicate the opposite. The potential for change is found at the interface of the biggest
difference between highest and lowest values from one location and its
neighborhood. It is understood that this area combines locational advantages with
lower cost of land, maximizing the income of achievement. Thus, the potential is
used to increase the urban cell loading (urban load). This change process is iterative,
continuous and complex, because locational opportunities are assimilated by other
agents and the system is constantly changed.

Even with presence of diffuse tensions in the urban growth simulation, the outputs
of original CityCell are not sufficient to identify the peripheral types in resulting
morphology. With these model limitations and seeking contribute to overcome them,
simple procedures have been proposed for modeling and simulation of peripheral
growth of cities, assisting the identification of peripheral types and the dynamics of
its formation. These procedures compose a prototype of a transition rule called
Periurban Growth Tendency (PGT) and will be presented below.

Periurban Growth Tendency: a prototype transition rule

The PGT rule is composed by following tendencies: 1) Diffuse Tendency, which
explores the possibility of innovation, simulating the formation of new nuclei; 2)
Neighborhood Tendency, which explores the positive feedback and the segregation
logics to existing settlements expansion; 3) Final Tendency, which assumes the
highest values of the two previous tendencies, corresponding the percentage of each
peripheral type in city structure, making conversion of urban fabric. In this way, the
diffuse tensions, as proposed by Polidori [18] and implemented in CityCell, allow a
first approach for simulation patterns of urban peripheries. Their logics consider
characteristics of urban morphology (low centrality) and natural environment (high
resistances for peripherization; lower resistances for closed urbanization).

Following the assumed operational hypothesis and considering the characteristics of
natural environment are already part of the calculations of diffuse tension
distribution, was formulate that identification can be obtained from the combination
of measures that indicate concentration of urban facilities and buildings densities.
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Avre used the CityCell outputs corresponding to morphological measures of centrality
and urban loads respectively, through programmed map algebra operations typical of
Gls.

The calculations proposed to find the Diffuse Tendency follow this logic: a) the
peripherization is associated with lower centralities (where there is less supply of
urban facilities) and a higher concentration of buildings (with smaller grain of urban
land division and buildings closer each other); b) the closed urbanizations are also
related to lower centralities, but not the smaller ones (where you can find more
urban facilities), and the lower density of buildings.

DTPeriph = Urban Load / Centrality R2 (1)

where DTPeriph corresponds to diffuse tendency for peripherization; Urban Load
corresponds to urban load value, normalized by maximum between 0 and 1; and
Centrality R2 corresponds to cellular centrality normalized from logarithm with
base-10, with values between 0 and 1.

DTClurb = Centrality R1/ Urban Load (2)

where DTClurb corresponds to diffuse tendency for closed urbanization; Centrality
R1 corresponds to cellular centrality, normalized by maximum between 0 and 1; e
Urban Load corresponds to urban load value, normalized by maximum between 0
and 1.

The operational hypothesis also indicates association between spatial patterns and
the socioeconomic similarities of neighborhood. Therefore, is important include the
pre-existing peripheries in the system input data, acting as masks. The cells
surrounding the mask take the urban load and the centrality values as variables what
define the Neighborhood Tendency, using a distance-decay parameter representing
actions-at-a-distance.

However, the emergence of one peripheral type does not generate only positive
feedback to the same type. High income people tend to not settle close to the
peripherization. It can be understood how a negative feedback. And this negative
effect can also happen in inverse way, when the valorizing of the proximities of high
incomes settlements not permitting the occupancy by poor people. To replicate this
effect of segregation in periurban growth process is included the parameter called
repel radius, which consists in a buffer where the tendencies (diffuse and
neighborhood) to opposite type of periphery are zero.

NTPeriph = Urban Load / (r+1) . decay 3)

where NTPeriph corresponds to neighborhood tendency for peripherization; Urban
Load corresponds to urban load value, normalized by maximum between 0 and 1; r
corresponds to the radius (or the amount of cells from the edge of the mask);
and decay corresponds to distance-decay constant.

NTClurb = Centrality R1/ (r+1) . decay 4)

where NTClurb corresponds to neighborhood tendency for closed urbanization;
Centrality R1 corresponds to cellular centrality, normalized by maximum between 0
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and 1; r corresponds to the radius (or the amount of cells from the edge of the
mask); and decay corresponds to distance-decay constant.

The Final Tendency of cellular conversion is found by union of diffuse and
neighborhood tendencies, prevailing the greater value when some cells have both
tendencies. From the amount of cell of peripherization and closed urbanization
masks, the system calculates the percentage of cells with each peripheral type in
relation to total urban cells. In each iteration, the amount of urban cells increases and
the peripherization and closed urbanization cells increases too according the
calculated percentage (this percentage can be edited by the user, enabling the
creation of scenarios), converting the cells with higher Final Tendency. So the initial
masks are changed, feeding back the system to calculate the Neighborhood
Tendency in the next iteration and generating dynamic to the model.

FTPeriph = max (DTPeriph; NTPeriph) (5)

where FTPeriph corresponds to final tendency of land use conversion for
peripherization;
NTPeriph corresponds to neighborhood tendency; and DTPeriph corresponds to
diffuse tendency.

FTClurb = max (DTClurb; NTClurb) (6)

where FTClurb corresponds to final tendency of land use conversion for closed
urbanization;

NTClurb corresponds to neighborhood tendency; and DTClurb corresponds to
diffuse tendency.

The PGT prototype may be applied to all urban cells of the system or only to new
cells brought with the urban growth process. In order to demonstrate the procedures
included in CityCell model to peripheral growth simulation, through the PGT rule, is
established an exploratory case study for the city of Pelotas, in southern Brazil.

Exploring the periurban growth: the case of Pelotas, Brazil

Pelotas has 327,778 inhabitants (according to Census 2010), with 93% living in
urban areas. Its urban area is located in the coastal plain with low altitudes. The
spatial clipping includes the effectively urbanized area of the city and its
surrounding natural environment (and rural), in order to allow the model simulates
expansion considering urban attributes and nature attributes. This study area
(Figure 2A) has 33.018 km in east-west and 19.139 km in north-south direction,
bounded by the following coordinates in UTM WGS 1984 datum, zone 22 south:
6500195.75 northern boundary;, 6481. 668.97 southern boundary; 393,807.48
eastern boundary; 360,802.84 western boundary. The resulting grid of spatial
disaggregation has 96 rows by 165 columns, resulting 15,840 cells with 200m x
200m.

To describe the study area were used three groups of attributes, corresponding the
system input data and the constraints related to urban growth: urban attributes
(effectively urbanized area (EUA) and central area) (Figure 2B); natural
attributes (lagoon, waterways, lentic waters, drainage lines, wetlands, forests,
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dunes, fields, and a random layer) (Figure 2C and 2D); and institutional attributes
(prohibition to urbanize in lagoon and waterways). Besides the attributes, are also
considered the masks of pre-existing peripheries: low-income settlements (LIS)
and high-income settlements (HIS) (Figure 2E and 2F). The simulation was set to
40 iterations (corresponding to 40 years), with growth rate approximately 1% per
year and tension distribution called isotension (20% for each of five tensions). The
PGT rule was applied to all cells of system and the parameters were set as
follows: decay equal to 1; repel radius with 2 cells; the percentage of each
periphery type based on mask.

As can be observed, the result highlights an increase of peripherization on seaport
area (at south), on Barro Duro balneary (at east) and the closer the Pelotas River
(watercourse between center of city and the coast of the lagoon) (Figure 3A, marked
with arrows). For the closed urbanization, mainly the result shows a vector directing
toward the Laranjal balneary (at east) (Figure 3B, marked with arrows), which
nowadays is empirically observed. This was only an exploratory study, aiming to
demonstrate the procedures of PGT rule. The procedures need follow the validation
steps and so could give more accurate results in simulations and future scenarios.

Figure 2: Pelotas input data for 2010: A) Google Earth base; B) urban loads (EUA and center);
C) environmental resistences (lagoon, waterways, drainage lines, wetlands, forests, dunes,
fields); D) random resistences; E) mask of LIS (over EUA); F) mask of HIS (over EUA).
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Figure 3: masks of peripheral types for Pelotas, respectively for iterations 13, 26 and 40, over
EUA, with tendencies for the type formations: A) peripherization; B) closed urbanizations.

Remarks and continuities

Modeling with cellular automata techniques for urban studies and geosimulation
have enabled simulate the morphological dynamic of urban growth, incorporating
the current ideas of systems, complexity, emergencies and self-organization [3-16].
The periurban growth is a phenomenon associated with the urbanization process,
having a strong relationship with natural environment changes and socio-spatial
segregation in cities. Therefore, is important that studies about socio-spatial
dynamic, especially when related to production of urban fabric in peripheral edges,
consider aspect of city and natural environment in an integrated way. The urban
growth model implemented in software CityCell considers both current ideas and
aspects of the city and the natural environment, allowing to simulate dynamical
changes of reality and to speculate about future scenarios.

To model and simulate the periurban growth was constructed an operational
hypothesis indicating that urban peripheries are associated with the concentration of
urban facilities, buildings densities, natural environment features and socioeconomic
similarities of neighborhoods, developed in a prototype transition rule called
Periurban Growth Tendency. From results found for present study, can be made the
following observations: a) the distribution of diffuse tensions proposed by Polidori
[18] and related to centralities and natural environment resistences allows to simulate
spatial patterns of the peripheral types; b) the Diffuse Tendency, that considers
indicators of concentration of urban facilities and of buildings densities, allows
identify tendencies of fuzzy urbanizations around the edges of city; c) the
Neighborhood Tendency, from pre-existing peripheries, allows identify possible
tendencies geared to attracting similar types; d) the Final Tendency, joining the two
previous tendencies and consider all items involved in operational hypothesis, allows
identify the conversion directed towards the peripherization and closed
urbanizations. For better accuracy to periurban growth simulation is indicated apply
procedures of validation (evaluating with patch measures and spatial correlation)
and sensitivity tests. Finally, it is expected that the studies allow explore future
scenarios, increasing discussion of peripheral growth and helping to strengthen the
model as a scientific tool to decision-making processes for urban planning.
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Abstract

Geographic information systems (GIS) are a powerful tool to handle spatial
information and are widely used to represent, manage and analyse spatial data in
many disciplines including geosciences, agriculture, forestry, metrology and
oceanography. In GIS, considerable efforts have been carried out for the
representation and management of the spatial data, based on the object view of the
space. However, they are still limited when it comes to representation and
simulation of spatiotemporal processes. Examples of such processes in the
geographic domain include global warming, inundation, erosion, land cover change,
urban growth and traffic. GIS have been criticized for not being able to provide the
necessary functionalities for representation, analyzing and predicting effectively the
behaviour of those processes. The integration of Cellular Automata (CA) and
geospatial models represents a potential solution for understanding and representing
spatiotemporal processes. In this paper, we are exploring the potentials of a VVoronoi
lattice based CA as an alternative to improve GIS capabilities to represent surface
water flow as a spatiotemporal process. In addition, we propose a hierarchical
perspective of the built lattice that may be essential to easy move between scales and
then to better understand the complex behaviour of the whole system.

Introduction

During the past decades, considerable efforts have been devoted to the
representation and management of spatiotemporal processes. Examples of such
processes in the geographic domain include global warming, flood, erosion, land
cover change, urban growth and traffic. The integration of Cellular Automata (CA)
and geospatial models represents a potential solution for modeling and
representation of spatiotemporal processes for better understanding of their complex
behavior. However, because of the irregularity and the multi-scale nature of these
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processes, a classical Cellular Automata model may not be able to simulate their
complexity.

The aim of this paper is to propose a Cellular Automata approach using an irregular
hierarchical tessellation. For this purpose, we propose to develop an irregular lattice
of cells based on Voronoi diagram for discretization of the space that is hierarchical
in order to better represent the multi-scale behavior of spatiotemporal processes. As
a case study we will apply the developed tessellation for the simulation of surface
water flow which has a very irregular behavior in the space and time and it is also
necessary to study its behavior in more than one scale for hydrologists. This paper is
thus organized as follows: The first part primarily deals with the cellular automata
construction. In this part, we explain how we build a lattice of cells using VVoronoi
diagrams, how we define specific neighborhood and transition rules and how we can
move from one scale to another to better represent the process behavior. In the
second part of the paper, the proposed approach is applied to a specific
spatiotemporal process in the hydrologic domain. We describe the CA transition
rules equations in order to simulate surface water flow. Finally, we present some
preliminary simulation results corresponding to a watershed located near Quebec
City and we discuss the potentials and limitations of the proposed approach.

l. Cellular Automata Construction

In the context of Cellular Automata theory [17], our model consists of three primary
components: a lattice of cells or grid, the neighborhood of each cell and the
transition rules that determine the changes of cells properties. In fact, each of these
components influences the state of each individual cell and in turn the global
behavior of the phenomenon. In this section, we present the characteristics of our
Cellular Automata Model and how its components can be organized hierarchically.

1. The Grid Geometry

[10] [1] and [ 2] argue that most of traditional Cellular Automata are based on
regular grids which are known to be less complex and easier to operate than irregular
ones [16]. Examples of these include rectangular, triangular and hexagonal
tessellations. Although the regular grids Cellular Automata are simple to construct,
they are less adapted to the irregularities of real world phenomena that they are
supposed to represent. [4] and [9] suggest that the VVoronoi diagram, and its dual
Delaunay triangulation, can be a good choice for the representation and simulation
of continuous dynamic fields.

Following some early researches on irregular Cellular Automata [15] using a
Voronoi-based spatial discretization, we propose to use Voronoi diagram as an
alternative Cellular Automata lattice of cells that can effectively support a more
realistic representation of spatial dynamic processes such as surface water flow.
Briefly, a Voronoi diagram may be defined as a particular kind of space
decomposition based on points or objects called generators. This decomposition
leads to a number of Voronoi cells, each associated with one generator. In our
approach each Voronoi cell corresponds to an automaton.
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One of the main issues in generation of VVoronoi diagram for cellular automata based
simulation is to determine on which set of points or objects the diagram should be
created. The answer is strongly dependent on the studied process as well as on the
available data. The spatial decomposition should allow a realistic representation of
spatial process and allow considering its irregular and complex behavior in the space
and time. In our case, surface water flow and its behavior is strongly related to
topography. Hence, the altitude is the most relevant parameter on which can be
based a point selection to construct the VVoronoi diagram. That’s why we use terrain
elevation data points as generators of VVoronoi cells. We can apply a point selection
approach to any kind of original elevation data set in order to have multi resolution
representation of the terrain topography. More specifically, terrain data is initially
obtained from topographic maps. LIDAR point clouds are also very well suited to
the construction of such irregular tessellations. Regular square grid elevation model
can also be used as initial data set. However, in order to eliminate unnecessary
points with appropriate algorithms and keep more relevant points for generation of
Voronoi lattice. The procedure consists in making successive point selections from
this original grid. Each selection’s output is a set of irregular distributed data points
suitable to construct a Voronoi diagram. The first selection keeps a maximum
number of points and generates our cellular automata initial data set. Then, the
following selections reduce the number of points, allowing less and less Voronoi
cells in each diagram or grid and defining different levels of scale. Details of point
selection algorithm are given in Section 3 which presents the multi-scale character
of the grid. Once the grid of Voronoi cells is built, the issue is to define the
necessary rules that formalize the interactions between neighbors and dictating the
update of cells’ states.

In the next subsection, we propose our own definition of the neighborhood
relationship between cells and we explain what kind of transition rules can be
used in the case of surface water flow CA simulation.

2. Definition of an Oriented Neighborhood and Transition Rules

Traditional square CA grid usually uses Moore and Von Neumann’s neighborhood
where the degree of neighborhood relationships is either 1:4 or 1:8 [3].

In the case of a VVoronoi partition, the number of neighbors is different from one cell
to another depending on the spatial distribution of data points in the space.
Furthermore, the distance between the cell and each of its neighbors and the length
of the common boundary cannot be fixed. However, the Delaunay triangulation
associated with the spatial discretization may be used to provide the links that define
the neighborhood, which is an important component of the CA approach. In fact
Voronoi diagram creates a space partition into regions such that any location is
associated with its nearest VVoronoi generator [5]. According to Gold [6], this allows
for an automated discretization of space and provides an adjacency structure from
which a topology table can be generated.

More specifically, a VVoronoi data structure is defined so that each VVoronoi cell is
associated with a vector containing information about its vertices, edges and
neighborhood’s generators. This structure allows for reaching parameters and states
of the neighbor cells in order to establish the transition rules and update the general
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grid state. In our case, we define a specific neighborhood based on terrain elevation
and the studied phenomenon. As a matter of fact, a cell A is considered to be a
neighbor of a cell B not only if it is a geometric neighbor on the VVoronoi diagram,
but also if water can move from B to A. Hence, in this case, B is not necessarily a
neighbor of A. One cell may have no neighbor if its elevation is lower than the
elevations of its Voronoi neighbors (Figure 3). This specific neighborhood is
predetermined before running the simulation algorithm. It is an output of the space
decomposition as well as the surface slope, two inputs which are strongly related to
the terrain elevation in the case of a surface water flow. Knowing that transition
rules are applied to neighbor cells, we can talk about oriented transition rules
because the interactions between cells agree with the water direction: Water
movement defines between which cells exist interactions and in which direction the
flow is authorized.

First Condition

A and B are voronoi neighbors

\Z

Second Condition

water can move from A to B

\NZ

Result

B is an automata’s A neighbor

Figure 3: Oriented CA Neighborhood Definition

The following subsection deals with building space scales using a VVoronoi diagram
decomposition and explains the algorithm we use to select points for each scale
level in order to have a multiscale space discretization.

3. Spatial Hierarchy

Generally, considering a multi-scale Cellular Automata, we need a grid refinement
method. This is useful when the real-world phenomena and associated behavior can
be studied and simulated at several levels of detail (or scales).

One important innovation of our Cellular Automata approach is the multiscale
aspect of the irregular grid of cells. In Geographic Information Systems, spatial
hierarchy of regular square grids is usually based on a quadtree data structure that
allows to recursively subdivide the space into quadrants. Hence, each internal node
has exactly four children. However, this kind of spatial hierarchy is rarely discussed
in the case of irregular space decomposition, and more specifically in relation to
a CA model. Indeed, the issue is to find a method to build different levels of
space scales based on Voronoi diagrams. In the literature, [5] propose to construct
Voronoi cells for the whole data set which constitutes the micro level of the details.
Moving to higher levels is accomplished by reducing the number of Voronoi cells.
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However, no algorithm was proposed to reduce the number of Voronoi cells.
Indeed, a similar approach was used by [11] who proposed a structure where the
index generators were local maxima of a given attribute (such as elevation). Our
solution is to go from a micro scale to a meso and then a macro scale by selecting
points from the original data set and constructing a VVoronoi diagram for each scale
using a reduced number of points. Hence, we propose an approach that allows us to
identify and sort important points for each scale and then construct one Voronoi
diagram for each scale. Certainly, depending on the type of spatiotemporal process
and its characteristics, there may be different methods to select data points or
objects for each space scale representation. Terrain generalization algorithms are
well suited for multiscale representation of terrain topography and its morphology.
Several generalization algorithms exist in terrain modeling domain. We selected
one of them, the VIP algorithm (“Very Important Points”) that can be related to
surface water flow processes. Actually, it is specifically used to store elevation
data points in order to eliminate less important points and to keep only the points
that are necessary to reproduce a topography model closest to reality. To apply the
VIP algorithm we need a Digital Elevation Model (DEM) of the studied area,
which has to be a raster square grid DEM. Then, the method assesses how important
is a given point by calculating how its elevation can be approximated by the
elevation of its direct eight grid neighbors. More precisely, a three by three filter is
used to define a kind of Moore neighborhood. So, each point has 8 neighbors
forming 4 diametrically opposite pairs. The procedure consists in examining each of
these pairs in turn for each point of the DEM: we connect the two neighbors by a
straight line and compute the perpendicular distance of the central point from this
line. For example, in Figure 5, we show how to compute the perpendicular
distance for N1 and N2 the north and south neighbors of a point P. It is assumed
that the greater the difference between a real point’s elevation and the estimated
elevation from its grid neighborhood, the more important the point is in term of
surface significance.

Figure 5: distance between diametrically opposite pairs

Then, we average the four distances to obtain what we call a significance measure
for the point. After that, selecting very important points is done by deleting points of
the DEM in order of increasing significance (deleting the least significant first). We
carry on the deletion until meeting one of the two following conditions: either the
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number of points reaches a predetermined limit, or the significance value reaches a
predetermined limit (Figure 6).

Connect two opposite neighbors by a
v straight line

L

Compute the perpendicular distance to
the central point

¢

Average the four distances to obtain the
significance of the point

-

Sort DEM points in order of increasing
significances

DEM paoint

- " The significance < limit x‘ahle_-____"'“-—=____
_'"-——.____..'_\ll}d the number of points = limit muntgt_e_r____,-—f""

l (es No

Eliminate DEM point End

For each DEM point

Figure 6: VIP Algorithm

In practice, once the different VVoronoi diagrams levels (or scales) are built; the
approach is to couple grids of different scales and define their overlap regions.
Indeed, as the basic geometry of the grid is a VVoronoi cell, its shape is different
from one cell to another and also from one scale to another. Furthermore, when we
slip through scales; we cannot predefine the final shape of an aggregation of a set of
Voronoi cells because the boundaries of one level do not necessarily correspond to
the higher level boundaries. Hence, our future approach’s attempt is to examine the
degree of overlapping between grids of different scale and to propose a solution to
aggregate parameters values from low to high levels.
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I1. CA Transition Rules for Surface Water Simulation

Watershed runoff simulations have been traditionally based on numerical
computations solving momentum and energy equations. While simulations based on
these methods generally simplify the constitutive equations in order to allow for a
closed solution [13], our cellular automata approach is a different alternative to
simulate water flow because unlike in traditional simulations it only computes local
processes from which emerges the global behavior that is not linked to the model
[11].

Surface water flow between cells is based on physical processes involved in water
movements. Hence, in order to maintain the conservation of mass, Cellular
Automata rules should specify the added quantity of water to each cell as a result of
precipitation (rain) as well as the loss of water due to infiltration in the soil. The
method is specified as follows: In each cell, we calculate the water velocity using a
rule based on Manning’s equation (Equation 1) [12] where the velocity depends on
the water surface slope S and the input roughness n depends on the type of soil and
vegetation.

velocity = depth?/3.5%% /n (D

Typically, Manning’s equation is an empirical formula for open channel flow
calculations. Hence, as we simulate an overland flow, the water depth is an
approximation which corresponds to the normally-used hydraulic radius in
Manning’s equation. The same approximation was used by [11].

The velocity is then used to compute the time T needed for the water to traverse the
cell (Equation 2). Until the time condition is met, the simulator keeps the water in
the cell. This time is then reset once the water in the cell is released to its
neighbouring cells.

T = width/velocity (2)

The simulation procedure that we use to update the grid state is explained in Figure
4. Firstly, we choose a time step so that water will not cross the cell in less than one
time step. Another condition is that the simulation time step cannot be less than
available data time step. For each cell of the grid we calculate the traverse time T as
explained in the CA algorithm (Figure 7) using equations 1 and 2. When the
traverse time T is completed, the amount of moveable water leaves the cell.
However, before that, this amount is stored in a buffer layer until we cover all the
grid cells. Then, the updating of the entire grid is applied simultaneously. The
distribution of the moveable volume of water is dictated by the elevation of the
neighbourhood’s cell.

In fact, the neighbours share the moveable water of the centre cell if its surface
water elevation is higher than them. In other terms, the model allows to transfer the
movable volume of water to the downstream neighbours in proportion to the
difference in water surface elevation. The following example is given by [13]: if two
neighbours have lower water elevation than the centre cell, and if one of them is
twice as low as the other, than two thirds of the centre cell’s movable water would
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go to the lowest downstream neighbour and a third would go to the other
downstream neighbor.

h A

Choose the time step t

.

Calculate current water depth

'

Calculate water surface slope S

:

Calculate water velocity

'

Calculate traverse time value T

h A

For each cell

v

. ravese time 1s comuted
Increment the time step

¢ Yes

Water leaves the cell

Figure 7: Simulation CA Algorithm

Currently, we have implemented the proposed CA approach for surface water flow
simulation. The simulation engine has been be developed in C++ programming
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language which is selected as the development language due to its
compatibility with the CGAL (Computational Geometry Algorithm Library) library
chosen for the geometric lattice building.

Data about terrain elevation, precipitations, type and occupation of the soil are
collected in Montmorency River watershed in Quebec City region where Laval
University has an experimental watershed named “Eaux Volées” with a huge amount
of data available and observed in a regular base for more than forty years (Figure

5).
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Figure 5: Location map of the Montmorency river watershed [14]

This data can be used not only for the calibration of the simulation engine but also
to validate the simulation results. Data inputs into our model are in forms of raster
layers exported from GIS text files. As a matter of fact, firstly, Voronoi diagram of
the micro scale is constructed with the prototype using CGAL functions. Then, the
generators coordinates are exported to ArcGIS where we interpolate other
simulation inputs: a layer of water depth (precipitation values minus infiltration) to
be used in equation (1), a layer of slope values which can be derived from elevation
layer and a layer of roughness coefficients derived from type and soil occupation
layers. Finally, in order to apply equations (1) and (2), the attribution of parameters
to each automata cell is done by our simulation engine which takes the Voronoi
structure as an input.

A major consideration of CA models is the computational resources needed to run
simulations. We are working on improving computational time, which is currently
about 30 seconds per time step for a grid of 800 VVoronoi cells. The result of a first
simulation shows how the model reacts to a constant 0.01 Manning’s n roughness
value (Table 1). This shows that the model produces realistic watershed simulation:
the same order of magnitude of real data.
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Table 1: Simulated and in situ Velocity values comparaison

Period Simulated Velocity (m®/s) __In situ Velocity (m%s)
June 2010 0.0643 0.0741
July 2010 0.0862 0.0566

In this step, multiple simulations are still to be performed to determine the impact of
varying the unknown parameter of roughness rate. Nevertheless, a better
computational time is necessary to allow such tests. That’s why, what is
pressing right now is to reduce the simulation running time.

111. Conclusion and Challenges

In this paper we have presented our research on a hierarchical irregular lattice
based Cellular Automata using Voronoi diagram for the simulation of spatial
dynamic processes such as surface water flow. It has been argued that the
traditional CA approaches based on regular tessellations are not suitable for very
irregular varying real world phenomena; we have proposed to use a Voronoi
hierarchical lattice instead of traditional regular grids which are commonly used
both in CA simulation methods and GIS raster models. We have suggested the
Voronoi diagram as an alternative space discretization model within GIS in order
to improve GIS capabilities for spatiotemporal processes presentation and
simulation. Showing the utility of different scales representation of spatiotemporal
processes, we propose a hierarchical approach that allows to merge Voronoi cells
based on the data attributes values, and then to move to higher scales. We have then
detailed different components of a CA simulation approach and described how it
can be practically applied to the simulation of the dynamic phenomenon of surface
water flow. Finally, we have detailed different procedures for the simulation of
surface water flow in a given watershed in Quebec region using the proposed
approach. An algorithm defining the CA rules was presented based on
hydrologic equations in order to define the interactions between CA cells. The
required information for the simulation process was identified using this equation
which mainly includes Digital Terrain Model, slope, soil type, vegetation,
information on precipitation and etc. There are numerous challenges that we need to
study in details in order to adequately adapt the proposed method for the simulation
of a dynamic process such as surface water flow. Firstly, spatial resolution for the
micro level is an important point to be considered. It is clear that the proposed
method can adapt itself to any resolution that is required by the application. In
addition, in contrast to the existing regular grid based CA, we can create a multi-
resolution adaptive grid to better represent the spatial variability of the dynamic
process in any level of hierarchy. Another challenge is the selection of the temporal
resolution for the simulation process that needs to be decided. The third challenge
consists on the attribution of the initial states to each cell. Validation of the
simulation process is another challenge that we need to address. Finally, the
aggregation process needs to be done more carefully, knowing the fact that
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aggregated cells surface does not exactly correspond to the higher level cell surface.
This introduces some uncertainties in aggregated data in higher levels. Hence, we
need to consider the propagation of these uncertainties to higher levels of
aggregation and try to reduce their impact on final results. To sum up, several
experimentations would be also necessary in order to more rigorously evaluate the
potentials of the proposed method.
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Abstract

This paper presents a method for mining the land use transition rules and parameters
of a cellular automata urban growth model using a self-adaptive genetic algorithm
(SAGA) method. It builds on the evolutionary computation technique to search for
and optimize a set of spatial parameters representing various spatial factors
impacting on urban land use change. The application of the SAGA-CA model to
simulate the spatio-temporal processes of urban land change in Southeast
Queensland’s Gold Coast City, Australia from 1991 to 2006 demonstrates that the
self-adaptive genetic algorithm can be integrated within a conventional urban CA
model to improve the performance of the model, therefore enhance our
understanding of urban landscape dynamics.

Introduction

There is a long-standing interest in understanding urban dynamics through the use of
computer generated simulation models [1-10]. Compared to modeling approaches
developed with the exclusive use of mathematical formulae, such as those based on
gravity theory to model transportation networks and land-use planning, models
based on cellular automata (CA) have been favored due to their ability to capture the
systematic spatio-temporal process and the stochastic behavior or characteristics of
land use change [8, 11-13].

Central to a CA based urban model is the definition of the model’s transition rules
which determine how the state of a cell changes over time [4, 12-14]. Cellular
automata models are simple in nature and are flexible at incorporating various
transition rules that may impact on urban development into the model. This type of
model is intuitive and capable of incorporating different driving factors to urban
land use change into the simulation process. However, the challenge remains in the
identification of appropriate parameter values to quantify the effect of various
driving factors on urban growth [15, 16].
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The development of genetic algorithms (GAs) has provided researchers with new
ways to identify and search for suitable transition rules and their defining parameters
in urban modeling [17, 18]. A genetic algorithm can be used to search for an optimal
solution to a problem based on the mechanics of natural genetics and natural
selection [19]. Compared with other evolutionary methods such as particle swarm
optimization [20, 21], GA’s unique feature exists in its operators, including
selection, crossover, and mutation. Substantively, GA is a randomized method rather
than a simple random operation because historical information is used to speculate
on new candidate solutions [19].

This paper presents a method for mining the land use transition rules and parameters
of a cellular automata urban growth model using a self-adaptive genetic algorithm
(SAGA) method. The model was applied to simulate the spatio-temporal processes
of urban land change in Southeast Queensland’s Gold Coast City, Australia. The
following section presents the modeling framework, followed by a description of the
study area where the proposed CA model is tested and calibrated. Next, the results
generated from the application are presented and discussed. Conclusions are drawn
in the last section.

The Modeling Framework

The modeling framework consists of a generic CA urban growth model which is
linked to an optimization module using SAGA to search for an optimal set of
transition rules and parameters for the CA model to simulation the dynamic process
of urban growth (Figure 1).

| CAModslin —
: Transition mules

¢ | Actual urban Neighborhood o Spatal constraints
- opograpne conshramt
pattern (to,) effect »  Stochastic effect

A

w CA sinmlation

| Simulated urban pattern (th.)
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Actual urban actual and sinmlated No
pattern (t;,) > urban patterns

}_ GA optimization
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Extract optimal CA transition rules (parameters) for model
validation and generation of urban growth scenarios

Figure 1: The SAGA-CA modeling framework
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The generic CA urban growth model

The generic CA urban growth model was initially configured using logistic
regression approaches [22], where the land use conversion probability of a cell at
location i at time t is represented as:

F =F,xFyxCxR (1)
Where:
R represents the land use coné{ersion probability of cell i at time t; P'is a land use
conversion probability due to its spatial proximity to facilities and services. This is
controlled by a set of spatial proximity factors d;(j =1..., k), including the distance of
each cell to the key regional and regional centers, distance to sub-regional and
district centers, distance to highways, distance to main roads, distance to the
coastal line and the prime agricultural land PZ; can be written as:

P-——1 &

—ag+Ek qaal )
l+e =

The parameters a,and a; (j =1.., k) representing the impact of each distance
factor on land conversion probability are to be mined and optimized using the
SAGA optimization approach.

P' is a land use conversion probability due to neighborhood support. In this
research, a square neighborhood with mxm cells was adopted; the probability a
cell develops from one state to another is defined as a proportion of the accumulative
state of urban cells within the mxm neighbourhood in total neighbouring cells. For
the case study implemented in this paper, the neighbourhood size is 5x5 cells.

C represents a (set of) land suitability constraints where urban growth cannot
occur. R is a stochastic disturbance factor on urban development.

The temporal scale is set to one year for each iteration of the model. Details
regarding the logistic regression based CA model can be found in [22].

Self-adaptive genetic algorithm for mining of transition rules

GA represents a possible solution by a chromosome. Each chromosome consists of a
set of genes or parameters that need to achieve an optimal solution to the problem
the GA is trying to solve. In the CA based urban modeling practice, all possible CA
transition rules affecting urban land use change are considered as chromosomes and
their defining parameters are the genes.

To search for an optimal solution which minimize the difference between simulated
and observed land use patterns, GA uses a fitness function to evaluate and quantify
the optimality of a solution [23]. This search and optimization process is achieved
according to natural selection rules, including selection, crossover and mutation.
However, standard GAs use fixed selection, crossover and mutation rates; this
can be problematic as such operators and their parameters cannot be modified during
the search and optimization process. A SAGA can overcome this problem; it not
only keeps population diversity effectively but also improves the performance of
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local and premature convergences [24, 25]. Such genetic diversity is important to
ensure the existence of all possible solutions in the solution domain and the
identification of an optimized solution. In addition, the SAGA improves the search
speed and precision of the standard genetic algorithm and hence, accelerating the
search and optimization process for problem solutions.

Selection is the key operation of the SAGA in which individual genomes are chosen
from a population of candidate solutions for later breeding, including recombination
and crossover. Individual solutions are selected through a fitness-based process
during each successive generation where solutions with better fitness values (that is,
the difference between the simulated and observed results is smaller) are more likely
to be selected. The crossover and mutation operators are adopted from [24], which
were defined through a probability measure which changes in accordance with the
fitness values.

Study Area and Data

Gold Coast City in South East Queensland, Australia was selected as the case study
site to apply the SAGA-CA model to simulate its land use change from 1991 to
2006. Gold Coast City is situated in the southeast corner of Queensland; it extends
north to the southern fringe of metropolitan Brisbane, the state’s capital city, south
to the border with the state of New South Wales, and west to the Lamington
National Park, the foothills of the Great Dividing Range (Figure 2). It has a total
area of 1400 square kilometers. The current urban structure consists of a range of
suburbs, localities, towns and rural districts which, according to the Gold Coast
Planning Scheme, will evolve into key regional centers, regional centers, sub-
regional centers and district centers [26].

City of Gold Coast

Anstralia

Figure 2: The City of Gold Coast (right) and its location in Australia (left)
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Gold Coast City has grown from a small beachside holiday town to the
second largest city in Queensland and the sixth largest city in Australia over the past
fifty years. From 1996 to 2006 it has seen a population increase from 375,000 to
472, 000 [27]. The rapid population increase has lead to phenomenal economic
development in the city and the state and significant geographical expansion of
urban areas. According to Ward et al. [28] urban areas in Gold Coast City increased
by 32% from 1988 to 1995. Such rapid urban growth and change may present
challenging issues in terms of social, environmental and economic sustainability
[29].

Two Landsat Thematic Mapper (TM) imageries acquired in 1991 and 2006 were
used to quantify the extent of land use change over this period in time. These data
were re-sampled to 30m spatial resolution with 1402 rows by 1965 columns. Three
types of land uses were classified from the imageries; urban, non-urban and water
bodies. As the focus of this research is on land use change from non-urban to urban
states, the presence of water bodies was considered as physical constraints to urban
growth. In addition to the satellite imageries, data representing key regional and
regional centers, sub-regional and district centers, highways, main roads, coastal
line, natural conservation and prime agriculture land as well as a 9 second DEM
were collected from the relevant government agencies. All data were re-processed to
raster grids in 30m spatial resolution.

Results and Discussions
Optimal chromosome/CA transition rule parameters

To construct a fitness function and commence the searching and optimization
process using the SAGA approach, a total of 20 000 sample cells were randomly
selected from within the study area. The distances of each of these sample cells to
the key regional and regional centers (d,,), sub-regional and district centers (d,,),
highways ( d,,, ), main roads (d,,), the coastal line (d,) and the prime agricultural
land ( d, ) were extracted from the relevant distance data layers. The model
achieved the best fitness value after 4,000 iterations. The convergence of the fitness
track led to the identification of an optimized chromosome or solution (Table 1).

Table 1: Optimized chromosome of the GeneCA model

Variables  Constant de Ao iy deg da dag
Parameters 0.779 -0.668 -0.471 -0.227 -0.304 -0.003 0.592

The optimized chromosome demonstrated the different impacts of the spatial factors
on urban land use change in the Gold Coast City. According to Equation (2), a
negative parameter of a (i =01...6) leads to a larger Py (t) value, that is, a positive
impact on urban growth or higher probability for a cell to convert from a non-
urban to an urban state. Likewise, a positive a; value results in a smaller Py (t),
hence, a negative impact on urban growth or lower probability for the cell to convert
into an urban state in the next time step. The parameter values optimized by the

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 237



Liu and Feng, Mining of CA based land transition rules

SAGA shows that the distance to the key regional and regional centers has the most
significant impact on the development of cells within its neighborhood, followed by
the impacts of distances to the sub-regional or district centers and the main roads.
On the other hand, close proximity to prime agriculture land has negative impact on
urban land use change. Hence, the closer a cell is to agricultural lands the less likely
the cell is to be developed to an urban state. This is consistent with regional policies
of conserving prime agricultural land.

Simulation accuracy assessment

To evaluate the simulation accuracy of the model, the error budget analysis as
proposed by Pontius et al. [7] was applied to compare the simulated results with the
land use classification data from the satellite imageries. This is to evaluate whether
the observed agreement between the map pairs is attributable to chance (C,,),
quantity (Q,, ), or location (L, ), and whether the disagreement between the map
pairs is attributable to location ( Ly, ) Or quantity ( Q). The five indicators were
computed for 2006 (Figure 3).

a) 1991 referencemap  b) 2006 reference map c) 2006 simulated map
Figure 3: Actual and simulated land use patterns of Gold Coast in 2006

Comparing the percentages of agreement and disagreement between the 2006
simulated result and 2006 reference map (Figure 4), the model achieved a simulation
of 85.0% match of cells between the two maps. Amongst these matching cells,
29.2% are locational matches and 27.1% are quantity agreement and the remaining
28.7% are agreement due to chance. On the other hand, there is 15.0% mismatch of
cells between the two maps where 5.2% are due to quantity disagreement and 9.8%
are locational disagreement (Figure 4).
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Figure 4: Error budgets between the reference and simulated result in 2006

Discussions

Previous studies show that the simulation accuracies of CA urban models are
affected by the methodologies used in retrieving the transition rules, the spatial and
thematic resolution of the model, as well as the physical, socio-environmental and
institutional situations of the areas under study. In this research, three thematic
categories (i.e. urban, non-urban, and water body) were extracted from satellite
imageries to simulate the process of land use change from non-urban to urban.
Given the complex land use types and conversions on the ground, it is challenging
to apply a model with simplified land use categorization to simulate multiple land
use change processes while still maintain high simulation accuracies.

The simulation accuracy of the CA based urban models is sensitive to the spatial
scale or resolution of cells [30, 31]. CA models configured at a coarse resolution
(e.g. 250m) usually generate low simulation accuracies whereas models configured
at finer resolution (e.g. 30m) generate relatively high accuracy [31]. The low
simulation accuracy of the model at a coarse scale is usually due to the isolation of
urban cells at such scale, where only a small number of isolated urban cells can be
identified in the initial input data [31].

Moreover, the methodology adopted in retrieving the CA’s transition rules is crucial
for good simulation results. A number of new methods have been developed
to capture land use dynamics and improve simulation accuracy. Using an
evolutionary computation technique the SAGA-CA model is a further improvement
on conventional spatial statistical methods such as logistic regression based CA
models; it optimizes the transition parameters of the CA model to improve the
model’s simulation accuracy. By applying the self-adaptive genetic algorithm
method to a typical logistic regression based CA model, the model is capable of
taking into account feedback from individual ‘genes’ during the modeling process.
This leads to the identification of a set of optimized transition rules.
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Conclusion

Spatially-explicit simulation of urban land use change has attracted widespread
interest in recent years with the focus on the spatio-temporal dynamics of urban
system and its land use evolution. Many CA based urban models have been
developed and applied in various situations. It is useful to apply such model to
simulate the dynamic change of urban land use, provided that suitable transition
rules reflecting the characteristics and driving factors on land use change are
identified and built into the model. However, it remains a challenging issue for
urban modelers to achieve such accomplishment in the modeling practice.

This paper contributes to this field by developing an urban CA model with its
transition rules optimized by a self-adaptive genetic algorithm. It builds on the
evolutionary computation technique [24, 25] by introducing a self-adaptive genetic
algorithm to search for and optimize a set of spatial ‘chromosomes’ through a series
of interactive and dynamic selection, crossover and mutation operations. The self-
adaptive genetic algorithm was used to optimize the spatial parameters representing
various spatial factors contributing to urban land use change. Consequently, a set
of optimized transition rules and their defining parameters were identified and used
to simulate the process of land use evolutions. The application of the SAGA-CA
model to Gold Coast City demonstrates the effectiveness of the SAGA technique in
optimizing the transition rules of an urban CA model, thereby contributing to human
studies of urban landscape dynamics. The high simulation accuracy generated by the
model demonstrate that the SAGA-CA model is a promising tool for simulating
urban land use change and future land use scenarios.

Further research will focus on introducing other spatial factors, such as land values
and income differentiated socio-economic factors, into the modeling process, as well
as considering multiple types of land use changes. This will evaluate whether the
SAGA technique is capable of searching for and extracting more complex transition
rules on urban land use evolution.
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Abstract

Empirical models meant to simulate and predict urban land use change are
commonly dependent on the utilisation of statistical methods to estimate the
probabilities of land use change. As opposed to such probabilistic methods, genetic
algorithms (GA) arise as an ancillary heuristic tool to refine and optimize such
probabilities by means of non-parametric approaches. This work introduces a
simulation experiment on urban land use change in which a GA-optimized Bayesian
calibration model has been employed in the parameterisation of several
infrastructure variables considered for simulation. The estimated spatial land use
transition probabilities drive a cellular automaton (CA) simulation model, based on
stochastic transition rules. The model has been tested in a medium-sized town in the
Midwest of Sdo Paulo State, Bauru. A series of simulation outputs for the case study
town in the period 1988-2000 were generated, and statistical validation tests were
then conducted for the best results by means of multiple resolution fuzzy similarity
measures.

Introduction

The employment of evolutionary (or Darwinian) premises for automated problem
solving is not new and dates back from the 1950s. Nearly a decade afterwards, three
different interpretations of this approach started to be developed in parallel by three
distinct researchers. Lawrence J. Fogel [1] in the US was the first one to
introduce the concept of evolutionary programming. John Henry Holland [2],
on his turn, called his method a genetic algorithm. In Germany, the domain of
evolution strategies arose with Ingo Rechenberg and Hans-Paul Schwefel [3]. It
was only in the beginning of the 1990s that these three areas were merged under
one major field called evolutionary computing. Also at this time an alike fourth
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stream had emerged — genetic programming. In this way, evolutionary computing
turned out to embrace the sub-areas of evolutionary programming, evolution
strategies, genetic algorithms, and genetic programming.

The field of evolutionary computing has presented linkages with Artificial Life,
especially since the 1990s, with the swarm-based computation and nature-
inspired algorithms. Genetic algorithms in particular gained popularity with the
work of John Holland [2]. According to [4], the increasing academic interest in
this field led to meaningful advances in the computers processing capacity for
practical applications, including the automatic evolution of computer programs.
Evolutionary algorithms, as stated in [5], “are now used to solve multi-dimensional
problems more efficiently than software produced by human designers, and also to
optimise the design of systems”.

As [6] reported, the use of genetic algorithms in cellular automata (CA) models
started at the end of the 1990s with the work of [7]. Other works in the same line
were produced, as in [8] and [9], which used GA for parameter estimation of
complex urban dynamic models, as well as in [10], [11], [12], and [13], in which
transition rules of CA models have been optimized by genetic algorithms (GA).
More recently, there has been a profusion of articles dealing with GA for calibration
and optimization of urban CA models [14], [15], [16], [17].

In all above-mentioned cases, a binary approach (urban x non-urban) has been
adopted. In a diverse way from the previously reported works, the purpose of this
paper is to deal with the simulation of multiple urban land uses (e.g. residential,
commercial, industrial, etc.) by means of a GA tool employed to optimize a
Bayesian calibration of a CA urban land use change model.

GA fundamentals

As stated by [18], evolutionary algorithms form a subset of evolutionary
computation in that they generally only involve techniques implementing
mechanisms inspired by biological evolution such as reproduction, mutation,
recombination, natural selection and survival of the fittest. In this process, there are
two main forces that form the basis of evolutionary systems: Recombination and
mutation create the necessary diversity and thereby facilitate novelty, while selection
acts as a force increasing quality [18].

Genetic algorithms, in brief, are methods that simulate the processes of natural and
genetic evolution through computational routines, aiming to solve optimization
problems in situations where the search space is huge and conventional methods
have demonstrated to be inefficient. GA are basically structured in an analogous way
to the biological chromosomes, as initially exposed. The first step consists in the
generation of a population of individuals, which are characterized by their
chromosomes, corresponding to numerical values representing a possible solution to
a given problem. During the evolutionary process, this population is evaluated, and
each chromosome is awarded a grade that reflects its adaptation capacity to a certain
environment. The fittest chromosomes are selected, and the least fit ones are
discarded, in accordance with Darwinian laws. The selected individuals are subject
to cross-over (recombination) and mutation, generating offspring to the next
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generation, which corresponds to a complete iteration of the genetic algorithm. This
process is repeated until a satisfactory solution is found [19].

Cross-over basically consists in combining the genetic material of two individuals,
generating two new descendents, which inherit the parents” characteristics. In order
to avoid the anticipated convergence of the genetic algorithm, it is necessary to
conduct a mutation operation, introducing new regions in the solutions search space.
Many aspects of such an evolutionary process are stochastic. Changed pieces of
information due to recombination and mutation are randomly chosen. On the other
hand, selection operators can be either deterministic, or stochastic. In the latter case,
individuals with a higher fitness have a higher chance to be selected than individuals
with a lower fitness, but typically even the weak individuals have a chance to
become a parent or to survive [18].

In order to assess the quality of a candidate solution, an objective function is used. It
provides to the genetic algorithm a measure of fitness of each individual belonging
to the population [19]. The choice of an appropriate objective function is crucial for
the success of the GA performance. A detailed explanation on the objective function
(or fitness function) employed in this work is presented in the next section.

Application
Study Area and the GIS Database

The GA-optimized CA simulation model was applied to a medium-sized city, Bauru,
located in the Midwest of Sdo Paulo State, southeast of Brazil. The city comprised a
total of 236,740 inhabitants in the initial time of simulation (1988), which increased
to 309,531 inhabitants in 2000. In this period, the annual population growth rate was
around 1.34%, and it was marked by the expansion of the existing residential areas
together with the mushrooming of peripheral residential settlements, which have
been mostly incorporated to the main urban tissue (Figure 1).

Figure 1: Land use map in Bauru in 1988 (left) and 2000 (right)
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Figure 2: Cross-tabulation map between Bauru land use maps of 1988 and 2000, indicating
permanence and changes in land use

Besides experiencing a considerable development concerning the residential use,
Bauru also witnessed intra-urban land use changes like the increase in industrial and
services areas (Figure 2).

The assessment of the total amount of land use change from 1988 to 2000,
commonly known as global transition rates, was directly derived from a cross-
tabulation operation between the initial and final land use maps, which provided the
figures presented in Table 1, associated with the five types of observed land use
change.

Table 1: Global transition rates for Bauru: 1988-2000

Land Use Non- . . ) Leis./

Urban Resid. Comm. Ind. Inst. Services Mixed Recr.
Non-urban ~ 0.9615  0.0333 0 0.0043 0 0.0009 0 0

Resid. 0 0.9997 0 0 0 0.0003 0

Comm. 0 0 1 0 0 0 0 0
Industr. 0 0.0438 0 1 0 0 0 0
Instit. 0 0 0 0 1 0 0 0
Services 0 0 0 0 0 1 0 0
Mixed 0 0 0 0 0 0 1 0
Leis./Recr. 0 0 0 0 0 0 0 1

After the identification of land use transitions and their respective rates, the next step
concerned the determination of the different sets of infrastructure variables
governing each of the five types of change, based on heuristic procedures. These
procedures basically regard the visualization of distinct maps of variables (distances
in grey scale) superposed on maps of land use transition, so as to identify those more
meaningful to explain the different types of land-use change. The variables selected
for modeling are listed in Table 2, and the sets of variables assigned to explain each
of the five transitions are indicated in Table 3.
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Table 2: Independent variables defining land use change in Bauru: 1988-2000

Notation Physical or Socioeconomic Land Use Change
Variable

dist_ind Distances to industrial zones

dist_res Distances to residential zones

dist_com Distances to the central commercial zone

main_res Distances to residential areas

belonging to the main urban agglomeration

dist_serv Distances to services corridors
serv_axes Distances to the services and commercial axes
exist_rds Distances to main existent roads

Table 3: Selection of variables determining land use change in Bauru: 1988-2000

Notation Nu_Res Nu_Ind Nu_Serv Res_Serv Ind _Res
dist_ind .

dist_res .

dist_com . . . .
main_res . .

dist_serv .

serv_axes . . . .
exist_rds .

All data used in this application had a resolution of 100 x 100 m and composed grids
containing 487 lines and 649 columns, there being a total of 316,063 cells defining
the region for simulation.

The GA-optimized Bayesian model of land use change

The GA-optimized Bayesian model of land use change was implemented in
Dinamica EGO, a modeling environment that embodies neighborhood-based
transition algorithms and spatial feedback approaches in a stochastic multi-step
simulation framework. The parameterization method available at EGO is based on
the theorem of conditional probabilities. For estimating the land use transition
probabilities in each cell, represented by its coordinates x and y, an equation
converting the logit formula into a conventional conditional probability was used.
The logit corresponds to the natural logarithm of odds, which consists in the ratio of
the probability of occurring a given land use transition to its complementary
probability, i.e. the probability of not occurring the transition. This concept derives
from the Bayesian weights of evidence method, from which the land use transition
probability can be obtained through algebraic manipulations of the logit formula, as
follows [20]:
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where P corresponds to the probability of transition in a cell; i corresponds to a
notation of cells positioning in the study area, defined in terms of x,y coordinates; a
represents a type of land use transition, e.g. from a class c to a class k, within a total
of n transitions; Vil corresponds to the first variable observed in cell i, used to
explain transition o; V ™ corresponds to the m-th variable observed in cell i, used to
explain transition a; O (T) represents the odds of transition T* in the i-th cell,
expressed by the ratio of the probability of occurrence of T;* over its complementary
probability, i.e., P (T;*)/ P (T;%); and W";, corresponds to the positive weight of
evidence for the i-th cell regarding the v-th variable range, defined as:

W = log, PO, PO T o)
where P (V™/ T%) is the probability of occurrence of the m-th variable range
observed in cell i, used to explain transition a, in face of the previous presence of
transition T %, given by the number of cells where both V ™ and T * are found divided
by the total number of cells where T;* is found; and P (V ™/ T;%) is the probability of
occurrence of the m-th variable range observed in cell i, used to explain transition a,
in face of the previous absence of transition T;%, given by the number of cells where

both V™ and T;* are found, divided by the total number of cells where T;* is not
found.

The W* values represent the attraction between a determined land use transition and
a certain variable range. The higher the W* value is, the greater is the probability of
a certain transition to take place. On the other hand, negative W* values indicate
lower probability of a determined transition in the presence of the respective
variable range. Using the W* values concerning the several distances ranges of the
static variables employed in the analysis, the Dinamica EGO model calculates the
cells transition probabilities according to equation 1. The grid cells are assigned a
value of probability and a probability map is then generated. In order to evaluate if
the model is well calibrated, i.e. if the employed explaining variables are appropriate
and if the categorization of the numerical grids is optimal, this map must present the
area with the highest transition probability values as close as possible to the areas
that actually underwent land use change.

The GA tool in Dinamica EGO retrieves the W* values and assembles them into
tables. Each model parameter (W*) represents an allele and will be a record in a
table that corresponds to a gene. This group of tables is an input to the GA tool. GA
tool spawns a population based on the genotype passed within a group of tables.
Inside GA tool, a routine (or functor) called Get current individual is placed to get
the genes from the individuals of a generation. Other functors are sequenced to get
the parameters and pass them on to the model. An evaluation (fitness) function is
coupled with the model output and its result is passed to a functor called Set fitness,
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which returns the fitness value to the GA tool for the selection process [21]. The
internal sequence of functors will iterate a number of times as specified by the user.
When the GA tool terminates, it outputs the fitness of the overall best individual as
well as the group of tables that comprises its genes. Additional parameters of the GA
tool are: number of generations; population size; convergence stopping criteria,
which forces the GA tool to terminate if evolution becomes asymptotical, as defined
by the convergence limit, which must be achieved within the span of generations set
by the number of generations; default lower and upper bounds, which set default
values within which all allele values may vary; customized lower and upper bounds,
defined by the user; amongst others [21].

The GA tool engine is based on the EO computation library and selects parental
individuals for the next generation using one-to-one deterministic tournament.
Individuals that take part in it are randomly drawn from the current population
without depleting it. Cross-over creates 70% of the new generation individuals. Any
allele in a gene of an individual chosen for mutation can be altered upon 1%
probability. A new generation is completed by passing it the remaining 29% of
parental individuals that were submitted to neither crossing-over nor mutation.
Figure 3 illustrates the graphical user interface of the Dinamica EGO GA tool.

=l Granp.

Simulation model

I Ttk
> Sithay L e

7 Fitness ;)utput

Figure 3: Graphical user interface of the GA model embedded in the Dinamica EGO

Objective Function and Validation

For assessing the fitness of the GA tool outputs as well as the accuracy of the CA
simulation model performance, fuzzy similarity measures applied within a
neighborhood context were used. The fuzzy similarity method employed in
this work is a variation of the fuzzy similarity metrics developed by [21], and has
been implemented in the Dinamica EGO platform.

Hagen’s method is based on the concept of fuzziness of location, in which the
representation of a cell is influenced by the cell itself and, to a lesser extent, by the
cells in its neighborhood. Not consider ing fuzziness of category, the fuzzy
neighborhood vector can represent the fuzziness of location. In the fuzzy similarity
validation method, a crisp vector is associated to each cell in the map. This vector
has as many positions as map categories (land uses), assuming 1 for a category = i,
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and 0 for categories other than i. Thus, the fuzzy neighborhood vector (Vnbhood) for
each cell is given as:

/uubhouu‘ 1 (2)
anym“ /uubhoml 2
: H
lunbfmadf
Ht = ‘ﬂ””"m N T N T )

where pnbhood i represents the membership for category i within a neighborhood of
N cells (usually N=n?); p crisp ij is the membership of category i for neighboring
cell j, assuming, as in a crisp vector, 1 for i and 0 for categories other than i (i C C);
m; is the distance-based membership of neighboring cell j, where m accounts for a
distance decay function, for instance, an exponential decay (m = 2-d/2). The
selection of the most appropriate decay function and the size of the window depend
on the vagueness of the data and the spatial error tolerance threshold [21]. As it is
intended to assess the model spatial fit at different resolutions, besides the
exponential decay, a constant function equal to 1 inside the neighborhood window
and to O outside can also be applied. Equation 5 sets the category membership for
the central cell, assuming the highest contribution is found within a neighborhood
window n x n. Next, a similarity measure for a pair of maps can be obtained through
a cell-by-cell fuzzy set intersection between their fuzzy and crisp vectors:

SV Vo) = g, 4 N TT ) RO T )

Hg iy 2 Mg oy, - + Wy Hy u.]u- )

where Vand Vgrefer to the fuzzy neighborhood vectors for maps Aand B, and pa,
and pg;are their neighborhood memberships for categories i C C in maps Aand B,
as in equation 4. According to [22], since the similarity measure S (Va,Vg) tends to
overestimate the spatial fit, the two-way similarity is instead applied:

S pooway (A, B) = ‘ S Vophoods + Verign )+ 5 (V, (©)

erispn + Vnbhoods )

Min

The overall similarity of a pair of maps can be calculated by averaging the two-way
similarity values for all map cells. However, when comparing a simulated map to
the reference map (real land use in the final time of simulation), this calculation
carries out an inertial similarity between them due to their areas that did not suffer
any change. To avoid this problem, the Dinamica EGO team introduced a
modification into the overall two-way similarity method of DINAMICA, using two
maps of differences, which present value 1 for the cells that underwent change, and
0 for those that did not change. In this way, each type of change is analyzed
separately using pair-wise comparisons involving maps of differences: (i) between
the initial land use map and a simulated one, and (ii) between the same initial land
use map and the reference one. This modification is able to tackle two matters. First,
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as it deals with only one type of change at a time, the overall two-way similarity
measure can be applied to the entire map, regardless of the different number of cells
per category. Second, the inherited similitude between the initial and simulated
maps can be eliminated from this comparison by simply ignoring the null cells from
the overall count. However, there are two ways of performing this function. One
consists of counting only two-way similarity values for non-null cells in the first
map of difference, and the other consists in doing the opposite. As a result, three
measures of overall similarity are obtained, with the third representing the average
of the two ways of counting. As random pattern maps tend to score higher due to
chance depending on the manner in which the nulls are counted, it is advisable to
pay close attention to the minimum overall similarity value. This method has proven
to be the most comprehensive when compared to the aforementioned methods, as it
yields fitness measures with the highest contrast for a series of synthetic patterns
that depart from a perfect fit to a totally random pattern.

Simulations and Discussion

The GA-optimized simulation and the land use change probabilities maps are
respectively presented in Figures 4 and 5, demonstrating a good performance of the
model.

Land Use 2000 Simulation

B vorwianwe O  commercial uze O  surirurionai we Mixed wse
B reideviaiws O suworialue O senicss use B Zesrecrsar we

Figure 4: The GA-optimized simulation compared to the actual land use in 2000
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Figure 5: Estimated transition probability surfaces and land use change: 1988-2000
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Transition Probabilities Maps from Land Use Transition Maps
Weights of Evidence Bauru: 1988-2000
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Figure 5 (Cont.): Estimated transition probability surfaces and land use change: 1988-2000

Final Remarks

Although there is a criticism towards genetic algorithms in the sense that they
require manifold parameters, the GA tool of Dinamica EGO already provides the
modeler with default input parameters, which have been previously tested and
shown to be optimal. Genetic algorithms must be regarded as a heuristic to find an
ideal solution for a problem, conducted by parallel research and not by an exhaustive
and troublesome process of trial and error.
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Abstract

This paper presents a dynamic urban land-use model using cellular automata. The
premise of the model is that urban activities interact with each other according to
their proximity, especially in certain type of areas which have a high potential for
self-organizing behaviour. The local dynamics of these highly adaptive enclaves
affect the dynamics of the urban region on a global scale.

In complex systems the flexibility and adaptivity to changes are crucial for the
systems dynamic stability. In this study the main focus is on temporal dynamics of
the pattern formation process, which is studied using an irregular CA-based model.
It is assumed that by exploring the dynamic states of the model resulting from
different border conditions it is possible to discover favourable set(s) of rules which
encourage the existing self-organizing dynamics in the modelled area.

The results indicate that the different values of the parameters impact greatly on the
model’s dynamics, and generate different dynamic states of the system. The
resulting stagnated and various types of dynamic states which emerged with
different parameter values were analogical to the prior studies among one-
dimensional automata. Most importantly, it seemed that the model could produce
favourable, dynamic states which may refer to self-organization of the area in the
model world. The model provides a tool for exploring and understanding the effects
of boundary conditions in planning process as various scenarios are tested, and helps
to identify planning guidelines that will support the future complexity of these areas.

Introduction

The number of dynamic CA-based modelling applications exploring the complex
urban phenomena, such as growth or land-use dynamics, has increased in recent
decades [1], [2], [3], [4], [5]. Most of these models have operated on a rather large,
regional scale. Despite the well-known lower-scale models of Schelling, Benenson
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et al. and Portugali, local-scale applications are limited and mainly deal with social
dynamics [6], [7], [8].

Dynamic complexity is considered essentially important for the evolution of
complex urban systems. In the model world, analogically, evaluating the dynamic
states of the model could help us to understand the premises affecting systems’
dynamic, and support the continuity of modelled urban processes [9]. This type of
dynamics, which results from the different sets of CA rules, has been widely studied
among mathematical and computational studies, mainly contemplating 1D CA (see,
for example, [10], [11], [12]). An interesting example of this in urban studies is
White et al.’s study of self-organisation in urban systems using fractal or radial
dimension [13], which explicated the process of simultaneously evolving the
progress of complex and order states using a CA model, and discovered that
spontaneously emerging nuclei determine future urban patterns. Nevertheless, urban
models that explore the dynamic states of the system are surprisingly limited,
considering that complex cities evolve constantly in a continuous, unpredictable
process that balances between dynamically stabile and unstable phases, and that this
type of dynamics can be considered as a necessary condition for such systems. In
particular, there is a lack of approaches that have studied the re-organisation of
urban contexts in reference to White et al.’s approach.

A broad range of literature in urban economics and economic geography
contemplates agglomeration economics, which refers to synergetic or competitive
activities’ tendencies to form clusters on a regional, nationwide, or global scale. The
spontaneous agglomeration tendency is important, especially in an innovative
economy [14], [15]. The location dynamics of several types of activities have not
been widely studied on the local scale. Several authors have referred to specific
types of local-scale-demarcated areas in cities, which emerge and self-organise
according to the agents’ interactions. The authors suggest that these areas can have
an impact on urban dynamics at a higher level.

Thus, empirical local scale studies would be of relatively high importance in
reference to these generative areas. Here, generative features refers to the area’s
ability to adapt and self-organise: certain mechanisms of autonomous order can be
perceived. These features are important to all industries, since they enhance the
economic viability and innovation. We need to study how to support these features
and study how the changes in the local rules of interaction affect their dynamics.
Due to their complexity and bottom up-nature of the mechanisms, the computer
model would be a relevant tool.

The question in this study is what kind of a dynamic model could be able to
simulate the self-organising dynamics of this type of generative area.

I will answer this question by using a modified CA model to explore the dynamic
states in the model’s temporal pattern formation processes resulting from differently
emphasised transformation rules, which simulate various ‘planning decisions’ in this
urban simulation game. The main dynamics of the model are based on empirically
perceived tendencies towards agglomeration of similar activities and regeneration
resulting from over-crowded clusters. The model is relaxed in certain ways. For
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example, the irregular cell space follows the actual site division, and quantitatively
(volumes) and qualitatively (activity types) defined transition rules simulate the
gradual urban processes. The model can help to build different scenarios in planning
processes, evaluate the impact that planning decisions have on the general dynamics
of the area, and provide the degree of freedom needed for the crucial self-
organisation of activities.

The performance of the model was tested using two areas — the Nekala old industrial
area in Tampere, and the Vaasa old garrison area in Western Finland — as case
studies. Both are in a process of transition towards a diverse mix of activities.
Nekala also contains a remarkable proportion of working places of Tampere region,
and has thus larger economic importance.

The theoretical framework

David Graham Shane considers certain type of ‘islands’, the heterotopias of illusion,
as a dominant element in today’s multinodal city. These areas are self-organising
and flexible formations within porous boundaries, which are able to order the society
through flexible and bottom-up-generated norms. Franz Oswald and Peter Baccini
introduced the term “urban fallow” to refer to areas that emerge from sudden
changes in society, such as transition of modes of production. They suggested that
these areas form important resources in city as they can often form a breeding
ground for the self-organisation of various cultural or economic actors. A certain
degree of freedom is required to maintain and support the adaptivity, dynamic and
diversity of these actors. [16], [17], [18], [19]. The target areas are typical fallow
land in a dynamic process of transforming to a heterotopia of illusion.

The clustering tendency of firms that occurs on a regional-scale, as cited in the
literature, is a basic principle of agglomeration economies and has been studied
widely [20],[21],[22],[23]. Studies have examined the impacts of this tendency at
different scales, contemplating nationwide, regional or more local concentrations of
firms. Systematic studies of location logics of different types of activities in one
specific area are limited. Nevertheless, the empirical findings in Nekala area indicate
this type of tendency. The premises of the model in the present paper are based on
these findings [24]. In addition, this dynamic is continuous in time; the area is
capable of adapting to temporal ruptures in society [25]. Given these results, the
present study contemplates how the dynamic evolution of the area could also be
guaranteed in the future.

A proposed cellular model

The majority of urban models concentrate on exploring the spatial dynamics of
regional scale patterns that result from various societal-economic conditions [26].
The present paper, on the other hand, contemplates the dynamic states of these
pattern formation processes in the neighbourhood scale by using a modified CA
model that operates in a GIS environment. Note that concentrating on the local scale
interaction does not exclude the obvious principles of location theory in economics.
It is assumed that basic characteristics of the area, such as good accessibility, low
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land price and low quality of the environment, have already ‘filtered’ the most
suitable activities entering the area according to their preferences. The aim is to
study the dynamics of these ‘filtered activities’, not to find, for example, optimal
locations to them in general.

I assume that this specific case of self-organisation enhances the innovations and
creativity required in all industries today. Here, self-organisation refers to the
location choices of activities in the model world, resulting from their individual
decision making in a certain regulatory framework. This generative process occurs
in a most desirable way within the models’ dynamic, complex state. The system
transforms and adapts constantly during the iteration. A system that is so far from
equilibrium oscillates unpredictably between steady and unsteady states. Therefore, |
propose using a dynamic model to explore the features of the dynamic processes
during the simulations resulting from various emphasises in the transformation rules
representing different planning decisions. The variables are the urban activities,
which are grouped into six categories: housing (U1), retail (U2), services (U3),
offices (U4), small industry (U5) and warehouses (U6). The type and volume of the
new actor depends on the type and volume of the activities in the neighbouring site.
These principles are based on previous empirical studies [27].

Dynamic cellular states

Since the 1980s, the dynamic states of one-dimensional CA have been studied
widely in the fields of mathematics and computational sciences (see, for example,
[28], [29], [30]) but there have been limited applications in urban studies [31]. In the
present study, | have applied classifications of dynamics states of Wolfram, Braga,
Wuenche and Langton. According to these classifications, | re-formulated a two-fold
classification of various favourable continuous, dynamic states (complex or
periodic) and stagnating states (infinitely oscillating or completely stagnating states).
Langton and Wuenche’s concepts of entropy provide a measure of the
unpredictability, implying the dynamics that can be applied in an analogical manner
[32], [33].

The model configurations: The neighbourhood and cell states

The lattice of irregular cells in the model follows the legal site division. The cell’s
neighbourhood contains parcels within 24 meters of the central cell. This
measurement follows the traditional block size in the area, providing the optimal
distance for pedestrians, which implies that firms benefit from the proximity of
competition or synergy between similar activities.

The floor area of the site is merged into the feature of the cell. The cell’s qualitative
state results from the combination of six different activities. Each activity has an
individually defined volume. The quantitative cell states are defined according to the
utilisation rate, which is a ratio of the used floor area to the current building right at
the site (Equation 1).
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N

Z sjlog, s;

j=1

Equation 1. Rj = utilisation rate (site j). Y. FA i,u = sum of the floor area (ul...u6) on the site I
and ¢j is the town plan’s building efficiency on the site j. Aj is the total area of the site j.

The building right varies between 0.5 and 1.25, following the current plan. The state
of the cell is then classified according to the utilisation rate into four categories:
empty, half-empty, half-full and full (Figure 1, Table 1). The quantitative cell state
affects the site’s future mode of transformation.

Table 1. Transformation rule 2: The type of transformation of the site depends on the state of

the site.

state of the site most probable procedure the motive

vacant build a new building to use the building right

half-empty  <10% demolish (fillup) to use the building right more effectively:
low demolishing costs

half-full fillup (change) to use the building right more effectively:
demolishing costs above the threshold*!

Sull remain/change/fill/reconstr. certain inertia on the full site; tendency to

**2e.20.6/0.3/0.01/0.99 change if one use starts to dominate the

neighborhood=lot of FA (empiria)

60% RECONSTRUCT
50% CHANGE
40% uFILL-UP
30% ® REMAIN
20%
iy .
0%
P-1 P2 p-3 P-4

Figure 1: Cells’ mode of transformation according to their utilisation rates. P-1: ‘empty’,
FAR=0-0.1; P-2: ‘half-empty’, FAR=0.1-0.3; P-3: ‘half-full’, FAR=0.3-0.7; P-4: ‘full’, FAR=
0.7-1.

Transformation rules

The basic mechanism the transformation rules are empirically based: synergetic or
similar activities tend to gravitate to within proximity of each other until the
clustering exceeding the threshold value causes ‘overpopulation’, leading to re-
location of some activities.
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The site’s mode of transformation is defined according to the current cell state. Sites
are grouped into four categories with potential values (P-1 to P-4) indicating the
probability of different types of changes. The type of future change depends on the
site’s category. The site may remain as it is (RM), it may fill up (F) according to the
percentage growth rate (GR) defined by the user, activities on the site may change
(C) while volume remains the same, or the volume and activities may be totally
reconstructed (RC) (Figures 1 and 2). The premises are (1) that vacant sites tend to
fill up mainly with actors similar to their neighbours and the sites are built to use the
building right efficiently, and (2) that the buildings are eventually replaced as the
demolition/construction costs become theoretically profitable.

CLASSIFICATION NEW STATE OF CELL NEW FLOOR AREA  PROXIMITY PREF.

uTIL. TYPE OF WGTH 1 PREFER.
RATE: —» TRANS- MATRIX
FORM. WGTH 2 )—-

P1..P4 :

]

‘__-___-___-.__-._-_._._._._._._._._._.__-._._._.__-.__-.__-.al

Figure 2: Model’s operation.
Nekala case

Firstly, the model was constructed and tested in a case area of the Nekala industrial
area in Tampere, Finland. This area of approximately 80 sites was planned in the
1930s for heavy industry and the processing of agricultural products. The area used
to be in the outskirts of the city, but active urban growth in recent decades has
caused the area to become surrounded by a dense city structure; its current location
can be considered quite central. Housing surrounds the area, which forms a unique
enclave within the urban fabric. The area has proven surprisingly capable of self-
organisation. It has also been able to flexibly adjust itself to the current mode of
production, from mainly industrial to a gradually more complex mixture of service,
information technology and cultural industry [34].

Features and former empirical findings in Nekala [24] have offered adequate
information for outlining the rules and dependencies for modelling.

Vaasa case

The second case study, in which the model was further developed, was an old
garrison area in Vaasa, Finland. This area is located inside the central area of old
Vaasa, where the transition from military use to diverse range of other activities has
occurred quite recently. The area consists of different types of gradually fulfilled or
historically valuable buildings, large empty sites and buildings beyond repair. A
wide range of temporary and permanent actors have gradually settled in to the old
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buildings at the lower price levels. Original and vital culture has started to appear in
the area, according to the actors’ reciprocal interactions.

Data on these actors comes from the Tampere and Vaasa Municipality. Numeric
data (Excel matrix) was combined with location information using GIS. Electrical
maps (spatial data) are from the Tampere and Vaasa Municipality offices. The
volumes of activities are from the building permit archives of the Tampere and
Vaasa municipality.

Computer runs

The first simulations were run in a pilot study in Nekala. The resulting pattern
formation process was relatively dynamic, but it was rather hard to observe the
dependences between these built-in control parameters and resulting dynamics.
Consequently, a preference matrix (Table 2) was introduced in the second phase of
the project in Vaasa. The weight values defining preferred proximity between actors
could vary within this experiment between 1 and 20, and they were iterated by trial
and error, which simulated the planning decisions.

As a result of negotiation process among shareholders in a planning process, two
sets of rules were chosen for computer runs; one set mainly supported new housing,
and the other emphasise more mixed uses. The shifts in dynamics were traced
heuristically using various weight values for each pair of activities. The lengths of
the iteration were mainly between 500 and 2000.

Table 2. Preference matrix. p=1...20.

Ul U2 U3 U4 Us U6

Ul u u u u u

U2 u u u u

U4 u u
Us u
ué6

Results

The resulting dynamics varied between iterations and depended heavily on the initial
values of the matrix. The emerging dynamics can be classified into two main
categories according to the end state, and two sub-categories describing the
behaviour in greater detail using the classifications of CA’s dynamic states are
described in Table 3.
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Table 3. Dynamic states of the model.

Type 1 Type2
Static Stagnation Oscillation
Dynamic Cyclicity Complexity

Two types of non-dynamic behaviour were perceived for the iterations that ended up
in a certain end state; the system could either end up to a certain permanent end
state, or oscillate infinitely between two or three values on certain sites. Despite
these few ‘blinking’ cells, the dynamics can be considered static. In both cases, the
volumes and the sites at issue varied. These dynamics seemed to be correlated with
high impact from the surrounding housing area, which occurred with relatively low
matrix values for the housing. The model quite accurately reflected the urban reality.
Surrounding housing caused pressure on housing development. The stagnating
progress seemed plausible, yet not desirable.

As the relative emphasis of the matrix values was shifted from Ulxnl...6 to
U4...US5, the behaviour of the model changed remarkably. First of all, the volumes
for all activities started to increase gradually and decrease in time, resulting in a
pulse of higher and lower utilisation rate on the sites; a certain order started to
emerge within the system. The lengths of these cycles were measurable, and the
dynamics of these periods depended heavily on the rule set (matrix values). With
certain rule sets, the system gravitated towards dynamics that were periodic but non-
uniform. These dynamics were diverse, which was contrary to the cases introduced
above (Figure 3).

30

75 + beginning of the cycle
& 5 O : 8
220
(5]
g 15 * :0 - * * * < <
-8— 10 00 0‘0’ ‘“ 0‘0&...0“’. 0’00““0’00.’““0“0: ‘0 0’“‘”“‘0‘00
= * +*0
o - -
= 5

0
0 50 100 150

order of values

Figure 3. Example: Dynamic, periodic states.
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With a very particular set of matrix values, the behaviour of the model changed
radically again. The uses U2-U6 remained periodic, although the lengths of the
cycles and the degree of predictability seemed to slightly change for different
activities. The most remarkable transition towards a higher degree of complexity
was perceived with Ul. Similarly to the periodic states, the system’s dynamic
seemed rather stochastic at the start of the iteration, but it soon started to gravitate
towards a certain cycle. The period could reoccur only twice, but did so for as many
as 18 times. Several different cycles could occur during one iteration (Figure 4).
Despite these short, constantly emerging and disappearing cycles, the overall
dynamics of the system were highly unpredictable, and this oscillation seemed to
continue infinitely even with remarkably long iterations (up to 2000 time steps).

200
+ beginning of the...
o *
5 150 = + s
[%2]
(5]
£ 100 .
. -
'-§ * \at > * :
[} 50 ® + ® o * ®
o X 4 - o ¢ *
* * A * . .o . .
0‘ * PR TN LN 4 ‘00 0’ LR 4
0
0 20 40 60
order of values

Figure 4. Example: Dynamic, complex states.

Although these dynamic states were easy to perceive visually, | also used a more
exact measurement for validation. Langton found that complex states appear only
with a very limited set of intermediate entropy values. According to Wuenche, the
degree of input entropy of the system implies its dynamic state in a similar manner.
In a totally chaotic system, the entropy is extremely high; in an ordered system,
rather low; and in a complex system, between these extremes.

Within this study, entropy values were calculated for the whole system after iteration
in order to perceive the differences in overall diversity and predictability.

Six examples of periodic and six of complex behaviour were chosen at random from
the 60 iterations that passed a visual evaluation test. The entropy for the system was
calculated according to equation 2.
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N

Z sjlog, s;

j=1

Equation 2. Given s; is the relative share t/t,; of the entities; t = length of the regeneration
cycle of an activity measured in time steps.

The results indicate a clear dispersion between highly ordered and periodic states
and more unpredictable, complex states. All of the entropy values resulting from
periodic states were 100 or below, while they varied for complex states from 150 to
300 (Figure 5).

H (stocastic/hypotetical) complex periodic
iter190
iter208
iterl70
iter158
iterl77
iter202 .

0 100 200 300 400 500

Figure 5. Entropy values (i) for six iterations visually classified as “periodic”; 50 >i> 100
“complex”; 150 >i>200 and with maximal stochasticity; i > 300.

Since the chaotic state was not perceived within this study, a stochastic set was
created for comparison purposes, indicating a maximum value (above 300) of
entropy in the system (Figure 5).

Concluding remarks

The static states can be considered analogical with traditional, hierarchical planning
processes, in which the plan consolidates a certain static position. In the context of
complex cities, this could imply a burdensome process of constantly updating plans.
Tolerable plans and dynamic simulations could provide a more flexible planning
procedure. This modelling experiment indicates that a certain degree of steering is
necessary in order for the process to achieve the most desirable outcome, such as
high diversity that enhances the city’s evolution.
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Discussion

Complex systems evolve constantly, balancing near a critical point. Only a few
urban modelling approaches have concentrated on the CA’s ability to produce
transient, highly organised, complex and constantly evolving structures. In this
paper, | have introduced a CA-based urban model with which to explore whether
such a model can discover certain critical states analogical to Langton’s phase
transitions, and to explore the optimal range of restriction for enabling these self-
organizing dynamics. The results indicated that this model was indeed able to
produce different type of stable and dynamic, even highly organised states:certain
initial values supporting the self-organisation and future evolution of the area can be
discovered.

The model could provide a useful tool for communicating in the planning process.
Despite its inevitable inability to predict accurately, it can provide guidelines for a
future balance between restrictions and freedom, and to identify the dynamic
features that should not be hindered or over-controlled. The accuracy of the model is
quite relevant for this general purpose. The model could be used for exploring the
urban dynamics on the general level, to enhance the understanding of the role of
restriction to self-organisation and city evolution.
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Abstract

Spatial Simulation in the context of Geographic Information Systems has been used
in the past decades to assess the evolution of spatial variables over time. Two main
techniques have been applied to perform this kind of spatial analysis: Cellular
Automata and Agent-based modelling.

A spectrum of spatial simulation tools exists today to aid implementing a model of
this genre, ranging from code libraries (Program-level tools), that support the coding
activity, to pre-built models (or Model-level tools), that can be used by simple
parametrisation. Somewhere in the middle of this spectrum lay Domain Specific
Languages (DSL). Nevertheless, the choice of a simulation tool still entails a trade
off between flexibility and the need of programming skills

This article presents a different approach to spatial simulation in the GIS domain,
through the employment of standards from the Object Management Group (OMG)
to produce a graphical simulation language - DSL3S. This language provides a way
to describes simulation models at higher level of abstraction, allowing faster
development, reducing coding errors and increasing model readability.

Introduction

Spatial Simulation in the context of Geographic Information Systems (GIS) is used
primarily to assess the evolution of spatial variables over time. Since the 1990s two
main techniques have been applied to perform this sort of spatial analysis: Cellular
Automata [1] and Agent-based modelling [2]. The simulation models produced with
these methods tend to be quite specific, only usable within the particular field of
application, largely due to the multi-dimensional and heterogeneous character of
spatial data. Mainly for this reason, modern multi-purpose GIS packages, such as
GRASS! or ArcGIS?, largely lack tools dedicated to this technology.

! http://grass.osgeo.org/
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Developing a spatial simulation model using a general purpose programming
language presents several burdens. Besides implementing the model, the program
has to control the flow of execution, manage system resources, and manipulate data
structures. This leads to several problems [3]: (i) difficulties verifying correct
implementation; (ii) limited model generality due to difficult modification and/or
adaptation; (iii) difficulty comparing computer models, usually restricted to their
inputs and outputs [4]; (iv) problematic integration with other models or tools (e.g.
GIS or visualisation packages).

Beyond general purpose programming languages, a spectrum of Spatial Simulation
tools exists, ranging from code libraries (referred to as Program-level tools), that
support the coding activity, to pre-built models (or Model-level tools), that can be
used by simple parametrisation [3] (see Figure 1). Somewhere in the middle of this
spectrum lay Domain Specific Languages (DSL).

e [DEVs| [Swarm|  [SELES] [RAMAS] [LANDIS|[FORSUM | Complete -
purpose | | models with a
programming | — — — S ——— | few adjustable
anguages | (SimScript] [EcoSim| [ SME |[SpaMod] [TELSA] [STORM] | pusameters
Program-level Support Model-level Support
General Purpose - Very Flexible Special Purpose

Large Class of Models is possible Assumptions
— — =

Higher Cost Easier & Faster Construction
Imperative Implementation Declarative Implementation

Figure 1: The Spatial Simulation tools spectrum devised by Fall and Fall [3].

In spite of this wide spectrum, spatial analysts are still constrained by the trade off
between the burdens of programming and the strictness of pre-built models; with
existing DSL not yet exactly freeing the analyst from coding.

This article presents a different approach to spatial simulation in the GIS domain,
through the employment of standards from the Object Management Group® (OMG)
to produce a graphical DSL. Starting is a short review of the types of simulation
tools available today, their strengths and shortcomings; then, present difficulties are
identified and the approach stated. The language is then presented in conceptual
terms and closing its implementation is detailed.

Spatial simulation tools

As stated in the Introduction, three main categories of tools can be devised:
Program-level, Model-level and DSL-level. This section describes each and briefly
discusses its main characteristics. A more detail review is provided by de Sousa and
da Silva [5].

Program-level support tools extend the facilities available in general-purpose
programming languages, usually providing code libraries for building specific
classes of simulation models. Examples of these tools are Swarm* RePAST [6] and
MASON [7]. Higher-level code, usually in a general-purpose object-oriented

2 http://www.arcgis.com/
® http://www.omg.org/
4 http://www.swarm.org/index.php/Main\_Page
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programming language, specifies how objects are used to produce the desired
behaviour. The main advantage of this type of tools is the encapsulation of the model
from functionality, relieving the modeller from banal programming tasks and
potentially producing leaner and easier to read code. These tools are tendentiously
open source, operational on several computer platforms and providing good level of
integration with GIS packages. Coupling this characteristic to their wider application
scope, Program-level tools usually gather around them large communities of users,
that provide informal, but extensive, support. On the downside, these tools require
an extra learning effort for their proper use. Beyond requiring relevant knowledge on
the programming language itself [8], the modeller must learn to some detail the
behaviour of functions, objects and methods provided by the tool kit, something that
may require several months of practice [9].

Model-level support tools allow the employment of spatial simulation without
requiring programming. These tools provide pre-programmed simulatio models,
designed for specific application fields that can be parametrised by the end user.
They provide fairly straightforward and rapid mechanisms for implementation, but
invariably constraint the modeller to a specific application framework. Examples of
such tools are SLEUTH [10], TELSA [11] and AnyLogic®. These tools tend to be
quite specific, and much of the model behaviour and assumptions are hidden by the
framework; their use in other application fields is largely impossible. They also tend
to lack GIS interoperability, in best cases requiring specific data formats.
Traditionally, they take advantage of market niches providing for the needs of a
restricted group of users. Thus, in most cases, they are commercial products and
their users community tend to be weak or non-existent, more often support is a paid
service.

Midway between Program-level and Model-level are DSL-level tools that provide a
specific language specialised for a simulation domain. Compared to Model-level
tools, these languages make fewer assumptions about the underlying simulation
model structure. Examples include NetLogo® SELES [3] and MOBIDYC [12]. The
use of DSL facilitates modelling and reduces the build-up time of simulation
models. The programming environment is more constrained that in Program-level
tools, with behaviour described using simple constructs. Still, the user has to
understand keyword meaning and how to compose a set of instructions into a
program. In general this category of tools doesn't provide much support for GIS
integration, some even totally lacking such functionality. Users communities tend to
be larger than those of Model-level tools, but on the other hand platform dependency
is often an issue.

Difficulties and Approach

When using a tool for spatial simulation a GIS analyst is faced with some important
challenges, namelly:

=  Most spatial simulation tools require advanced programming skills;

® http://mww.xj tek.com/anylogic/why_anylogic/
® http://ccl.northwestern.edu/netlogo
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=  Those that do not require such knowledge are narrow scoped and invariably
lack GIS interoperability;
=  There's no standard or common language to describe spatial simulation
models.
Analysts working with spatial data either come from GIS related areas, like
Geography or Geodesy, or from the scientific areas of application, such as Biology
or Economics. In spatial simulation projects is almost mandatory the involvement of
programmers, skilled in advanced methods like object-oriented technologies. This
creates a further communication step from model concept to its implementation.
The adoption of pre-compiled Model-level tools also imposes its burdens. The
correct implementation of such models is often hard or impossible to verify, since
most are commercial, or otherwise closed source tools. Their static structure
imposes strict compliance to their conceptual framework. Experiments with different
behaviours or the input of alternative spatial information is impossible.
A simulation model that can only be described by the underlying source code
becomes inaccessible to most GIS analysts. Source code specificities, such as data
input/output or control structures, produce a layer of obfuscation that complicates
the comparison of different models. There are a number of concepts that are
common to any spatial simulation, such as the succession of time, spatial variables,
agents or spatial location, but two implementations of a same model can appear
entirely different if based on different tools, that impose different software
architectures.
Our work attempts to address these issues through the development of the DSL3S, a
Domain Specific Language for Spatial Simulation Scenarios. This language takes
spatial simulation as a branch of the wider Spatial Analysis GIS field, where model
inputs originate at least partially from a GIS and whose outputs may also have geo-
referenced relevance. The same approach shall be taken to models that are
traditionally implemented with cellular automata and to those based on agents,
seeking a language abstracted from such technical differences.
DSL3S is design as a UML profile” because it allows the development of simulation
models through UML class diagrams (to which stereotypes from the profile are
applied and parametrised with properties). These models are then feed to a model-to-
code transformation facility producing a ready-to-run simulation model on top of a
Program-level tool. Then the analyst can chose to either perform tuning at model
level or further refine the corresponding source code with the assistance of a
developer.
The improvements with this approach are:

= Faster development, reducing the lag from prototype conception to testing;

= Reduction of errors, by reducing (or even eliminating) coding activities;

= Increased readability, with models described by graphical diagrams;

=  Improved GIS interoperability, by using the modern Program-level tools

= One model, several implementations, code generation templates can be
developed for different target Program-level tools.

" http://www.omg.org/technology/documents/profile_catalog.htm
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The following section describes the concepts underlying the DSL3S.

The DSL3S Meta-model

Three main pillars have been identified as the underpinning concepts of a spatial
simulation: Spatial Environment Variables, Animats and Behaviour. Spatial
Environment Variables are spatial information layers that have some sort of impact
on the dynamics of a simulation, e.g. slope that deters urban sprawl, biomass that
feeds a wildfire. Animat is a term coined by S. W. Wilson [13] signifying artificial
animal; in the context of DSL3S it is used more widely, representing all types of
agents of change, such as wildfires, urban areas or agents in a predator-prey model.
Behaviour associates the former two concepts, defining how Animats react to their
surrounding environment and internal state, examples can be movement or
replication.

Beyond these core concepts, other elements can also be found in a simulation,
particularly context variables. Global Variables define information that is constant
across the whole space of simulation, such as wind direction in a wildfire model.
Global variables can eventually change with time, simulating changing environment
conditions (again wind direction is a good example). Animats can have variables
themselves, called State Variables that detail their internal state.

A Simulation is composed by a set of Spatial Environment variables, Animats and
Global variables; Animats may be composed by series of State variables. Animats
are also composed by Behaviours that determine how it's internal state evolves;
behaviours can be function of global variables, spatial environment or the state of
other animats (see Figure 2). All these concepts are stereotypes in the DSL3S profile
(see Figure 3).

class ConceptualModel
Simulation
1
1 1
1. 1
Variabis Variabis Variabis
' Animat
Global Spatial State

Behaviour

Figure 2: The core concepts of DSL3S

The Global Variable is intended to be a simple scalar value that may vary with time.
It can for instance be set randomly at simulation start and/or made to vary randomly
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each time step; it can also be fed into the model as a pre defined time-series of
values, for instance read from an input text file.

The stereotype for Spatial Environment Variable is essentially a stub for the input of
geo-referenced data. Each instance shall correspond to a spatial layer with the
characteristic of having an unequivocal value for each location in space. No
reference system is made explicit, it is assumed that all spacial data imputed to the
simulation is bound to the same system and the model effectively operates in an
ordinary Cartesian plane. For now no distinction between vector and raster data is
being considered in the meta-model.

class D5L3S 7
ametaclasss
Class
+ isActive: Boolean
A
i N
e .,
N
wextendss  sextendss  wextendss  cextendss  osdends,
! Y
| 5
Simulation Q) Animat () Spatial (3 Variable ga Behaviour gﬁ

State () Global ga

Figure 3: The main stereotypes of DSL3S.

Animats are essentially an aggregation of state variables residing at a perfectly
identifiable location in space. Different types of Animat can model specific genres of
actors, e.g. wolves and sheep in a predator-prey simulation. The initial number of
animat instances and their spatial positioning can be provided by a specific geo-
referenced data set such as a raster map. By similar mechanisms the initial values of
state variables can too be set with geo-referenced data.

The elements presented so far focused on retaining the information needed to run a
spatial simulation. But more than that is required to capture spatial dynamics, the
way animats act has to be made explicit. In DSL3S this aspect is modelled with
specialisations of Behaviour, more precisely: Initiate, Move, Replicate, Harvest
and Perish.

Initiate captures the conditions under which a new instance of an animat can appear
in the simulation, the act of "birth”. An example may be an urban development
simulation where the emergence of a new urban spot is possible in an area that meets
a certain set of criteria like distance to transport infrastructure or topography.
Probabilities of birth can also be defined with properties.

Move relates an animat with one or more spatial environment variables or other
animats, determining the locations that are more or less favourable to be in. Specific
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properties allow to weight the relevance of each class related to a Move behaviour.
For instance, in a predator-prey simulation the movement of a "sheep" animat may
be positively weighted in a relationship with a "grass" class and negatively weighted
in a relation with a "wolf" animat.

Replicate captures behaviours where an animat replicates itself to an adjacent
location, such as a wildfire spreading or an urban area sprawling. Just as with
previous behaviours, the objective is to capture the conditions under which an
animat may originate a sibling into its neighbourhood. Properties may weight the
influence of spatial environment variables (e.g. fire spread) or set thresholds against
the animat's internal state (e.g. biological reproduction).

Harvest an act on which an animat may change other elements in the same spatial
location; it can act on a spatial environment variable, such as a wildfire consuming
bush, or by seizing another animat as in a predator-prey simulation. In this class
properties parametrise the changes of this action on both harvester and harvested.
Perish defines the circumstances under which an animat instance may cease to exist
during the simulation (e.g. "starve"). This class defines minimum thresholds related
to animat internal state that determine conditions for the endurance of its existence.
It may be associated with the animat class itself to set conditions by which an
instance may cease to exist due to crowding. Associations with spatial environment
variables may provide further conditions for existence.

class Behaviours
Behaviour @&
Harvest gs Move @3 Originate g; Perish g; Replicate gs

Figure 4: The five behavioural stereotypes.

This is just a selection of behaviour classes that provide a set of core procedures for
animat conduct. In their seminal work, Epstein and Axtel [14] conceive a
considerably larger set of behaviours in a spatially bound agent based simulation,
including elaborate processes such as trade and cultural exchange. While interesting,
these intricate behaviours are less common in pure GIS applications (where the
dynamics is captured at a higher level of geographic abstraction) and more keen to
Social or Economics studies. However, the addition of further behaviours will be the
main process of extension of DSL3S, answering to new requirements if necessary.
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Views and lcons

DSL3S models can become visually intricate if a single diagram would de used to
represent a complex spatial simulation scenario. To avoid such difficulties distinct
Views are proposed to better organise models (see Figure 5):

= Global View - contains the simulation settings that do not have spatial
realisation. Includes Simulation and Global classes, defining parameters such
as the number of time steps to run, spatial extent or result output.

=  Spatial View - where all the Spatial Environment variables are configured,
defining the geographic inputs to the simulation.

= Animat View - defining animat internal state. In simulations scenarios with
more than one animat several animat views can be used.

= Behaviour View - contains only the classes with specialisations of the
Behaviour stereotype applied on, but also showing composition links to all
classes that parametrise each behaviour. A dedicated view for each different
behaviour is proposed.

= Simulation View — a simple package diagram that aggregates all other
Views.

g Views

Simulation View

Global View Spatial View
Animat View
Behaviour.1 View Behaviour.N View

Figure 5: The proposed Views scheme for DSL3S.

Beyond these views a set of icons is also proposed to make the language visually
explicit (see Figure 6). For Simulation, Global Variable and Spatial Environment
Variable direct pictorial representations of their concepts are used. For the
stereotypes Animat, State and Behaviours are proposed abstract symbols intending
to create mental associations with a simulation model.
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class ConceptualModelicans

5 Oe
= *— AO
Global Spatial Animat State

Enviropment
0.+ 0.* 0.-

Initiate Move Harvest Replicate Perish

Figure 6: The proposed icons for DSL3S stereotypes.

Implementation

The reference architecture for the DSL3S language defines three components, all
based on open source technologies (see Figure 7):

= the UML profile, supported by the Papyrus add-on for the Eclipse® IDE;

=  MASON, a Program-level tool supporting the generated code;

=  Model-to-code generation templates, developed with Acceleo, another
Eclipse add-on.

Papyrus

Papyrus® was a project started by the Commissariat & I'Energie Atomique in France,
with the aim of producing an advanced graphical editor for the UML language,
supporting particular DSL, especially SysML, a language for systems engineering.
It evolved as an open source product based on the Eclipse Modelling Framework™
(EMF), a tool-kit that supports the edition and visualisation of structured models
defined in the XMI language and provides a set of Java classes that facilitate its
manipulation. Papyrus eventually evolved to support the development of ad hoc
DSL, through the definition of UML profiles.

8 http://www.eclipse.org

® http://www.eclipse.org/modeling/mdt/papyrus/
2 http://www.sysml.org/

™ http://www.eclipse.org/modeling/emf/
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= UML profile:
f ) development,

application

O HECEICT)

code generation

.

MASON - GeoMASON

target simulation package

Eclipse IDE ﬂmv

Figure 7: The technologies used to implement DSL3S.

In 2009 Papyrus merged with Eclipse altogether, becoming the forefront graphical
UML editor add-on for this popular IDE, replacing other assorted tools with fewer
capabilities. It is presently close to fully support the version 2 of the UML language,
coming to be one of the most advanced tools available for the purpose. Beyond
SysML, Papyrus includes a series of other DSL dedicated to domains like embedded
systems or automotive systems.

Acceleo

Acceleo?? is an open source code generator created by the French company Obeo,
first released in 2006, as a plug-in to Eclipse 3.0 and 3.1. It is also built on EMF,
facilitating the interoperability with several other modelling tools based on the same
technology. The following year the Eclipse Foundation took Acceleo as an official
project. In latter versions Acceleo adopted the MOF Model to Text Transformation
Language®™® (MOFM2T), another OMG standard. Though not yet fully
implementing this standard, the model-to-code generators produced with Acceleo
are today some of the closer to the scheme proposed by the OMG.

The code generation mechanism is based on special files called templates, which
define the text output to produce from a graphical model. They are composed by
regular text plus a series of annotations that are substituted by values and names of
model elements during generation time (see Table 1). Traditional computational
operations such as branches or loops are also possible to include with specific
annotations, allowing the production of more complex outputs. Templates can be
articulated through an inclusion mechanism, whereby a master template can make
use of several other templates creating a generation chain. When fully developed, a
generation chain can be transformed into an independent plug-in for Eclipse,
facilitating its portability and application.

Acceleo 3 fully supports code generation from meta-models, identifying stereotypes
applied on classes and providing access to properties. The later isn't based on
MOFM2T, but provided by a service, essentially a Java method that browses
through the UML2 object model associated with each class.

22 http://www.acceleo.org/pages/introduction/en
%2 http://www.omg.org/spec/MOFM2T/1.0/
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Table 1. A simple Acceleo template and its output when used on a class named “Clients” with
the stereotype “Table” applied on. The “hasSteretype” query is an external service.

Acceleo code template Sample output
[comment encoding = UTF-8 /] File for a class with the
[module generateProf( stereotype Table.
"http://wew.eclipse.org/uml2/3.0.0/UML" }/]
[template public generateProf(c : C(lass) ? The name of this class is
(c.hasStereotype( Table'))] Clients.

[comment @main /]

[if (c.has5tereotype(’'Table'))]

[file {(c.name.concat('.test'}, false, 'UTF-8")}]
File for a class with the stereotype Table.
The name of the class is: [c.name/].

[/file]

[/if]

[/template]

MASON

MASON (the acronym for “Multi-Agent Simulator Of Neighbourhoods™) aims to be
a light-weight, highly-portable, multi-purpose agent-based modelling package [15].
MASON is a relatively new tool, with the first version coming to light in 2003;
being somewhat different for tools developed in the 1990s. Its objects are architected
in such a way that simulation models are totally isolated from visualisation and
input/output mechanisms. MASON is fully written in Java and freely distributed,
hence it produces programs that are highly portable between different operating
systems, not only running alike but also presenting identical results. Comparative
results have shown that in general MASON is likely the fastest of the main Program-
level tools.

MASON was initially used for artificial scenarios, evolving as a text input/output
tool, lacking graphical facilities [7]. These features are now fully available, and
improved with the usage of Java3D. Supported by extensive documentation and a
relevant comunity™, MASON has been adopted more widely.

GeoMason®® is a rather complete extension for geo-referenced data. Input and output
functionality is available for both raster and vector data, relying on third party
packages: the Java Topology Suite for geometry manipulation, GeoTools for vector
interaction and GDAL for raster formats.

Its light-weight infrastructure, extensive documentation, and easy of integration
through Eclipse made MASON an obvious choice for validating DSL3S.

Summary and future work

The application of spatial simulation techniques to the GIS realm is still today
locked in the choice between versatile tools that require advanced programming
skills and easy to use pre-built models that force relevant compromises of
transparency and scope. Several DSL, such as NetLogo or MOBIDYC, have been

 http://cs.gmu.edu/~eclab/projects/mason
' http://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/
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tried in this field but invariably producing imperative languages with compromises
of their own.

DSL3S proposes a new approach to this subject, with the development of a UML
profile language and a code-to-model transformation infrastructure, producing
simulation models based on a Program-level tool. This scheme promotes faster
model development, reduces coding errors and increases model readability through
graphical models. Relying on MASON, it guarantees interoperability with
geographic data, while largely dispensing coding activities. The language is being
developed on the Eclipse IDE, using the modelling ad-ons Papyrus and Acceleo.

In the near future DSL3S will be assessed through its application to real world
scenarios. This interative process will allow to understand how far it can go in its
current form and how necessary new behavioural stereotypes may be.
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Abstract

Air quality is a major concern in urban areas worldwide not only because of its
severe health impacts but also due to its influence on living quality and residential
behaviour. The subsequent increasing demand for residential areas in the greener
fringes of urban agglomerations fuels the discussion about sustainability in future
cities. As traffic emissions are acknowledged to be the major source of pollutants in
an urban environment this residential trend has triggered research to further
understand the influence of urban structure on air quality. In order to meet
sustainable growth, many researchers argue that in a global perspective a compact
city is the desirable urban form due to less traffic distance, just in contrast to the
trend towards urban sprawl. However, quantifying the link between urban structure
and air pollution has only been the aim of few research studies so far. Thus, our
objective is to deepen the understanding of this link by coupling a micro-economic
CA urban growth model with a traffic emission model and a CA air pollution model
while focussing on the impact on residential population.

In order to simulate peri-urban growth of a theoretical city we use the CA economic
model S-GHOST, which takes into account residential preferences for green space
and social externalities and accordingly generates the spatial pattern of houses, green
space and road network. Based on calibrated self-organized long-run urban forms,
the emitted traffic pollutant concentrations caused by commuters to the CBD are
estimated within the generated road network and dispersed using a CA dispersion
model. The CA approach accounts for the dynamic behaviour and the substantial
spatial variability of the pollutants. Based on gravity, wind velocity and the
characteristics of neighbouring cells, the lattice gas CA simulates pollutant
transportation, collision and dispersion. Since we are interested in the effects of
urban structure on the population in the residential locations, resulting exposure
concentrations are calculated and compared for different equilibrium urban forms.
Not only the global perspective on exposure are of interest to us but essentially the
local perspective to understand the factors influencing air quality within urban
structures. How do the residential preferences like green space and social amenities
influence air quality besides, for instance, transportation costs? Additionally, the
question of scale and time is addressed: which urban structure provides
sustainability of cities in a long-term perspective on city but also population level?
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Introduction

Air quality is a major concern in urban areas worldwide not only because of its
severe health impacts but also due to its influence on living quality and residential
behavior. The subsequent increasing demand for residential areas in the greener
fringes of urban agglomerations fuels the discussion about sustainability in future
cities. As traffic emissions are acknowledged to be the major source of pollutants in
an urban environment this residential trend has triggered research to further
understand the influence of urban structure on air quality. In order to meet
sustainable growth, many researchers argue that in a global perspective a compact
city is the desirable urban form due to shorter travelling distances, just in contrast to
the trend towards urban sprawl. However, if energy consumption (e.g. [1]) and total
emissions (e.g. [2]) can be shown to be reduced with more compact urban forms via
reduced car use at regional scale, compactness is still debated ([3],[4].[5]).
Moreover, population exposure to traffic pollutants is rarely directly considered,
while it might well increase with compactness due to joined concentration of traffic
flows and population and because of shorter trips thus with colder and more
polluting engines. In addition to triggering health problems, the compact city might
therefore well reduce the attractiveness of the more central areas and favor exurban
residential choice, in contrast to an anti-sprawl policy. Modeling the link between
urban structure and air pollution has only been the aim of few research studies so far
[6], [7]- Our objective is to deepen the understanding of this link. We assume that
how cities are locally designed is key to resolving the aforementioned compact city
contradiction. We also believe that residential preferences should be explicitly
considered in order, in the longer run, to assess how households trade-off pollutants
and other locational attributes. In this paper we couple a micro-economic CA urban
growth model with both a traffic emission model and a CA air pollution model while
focussing on the impact of residential preferences and local designs on air pollution
exposure of residents.

Methodology

We chose a purely theoretical modeling approach, combining factors we found most
relevant in a sequence of four models: (i) residential choice (ii) traffic generation
and pollutants emission, (iii) pollutants dispersion and (iv) population exposure
model.

Residential Model

In order to simulate peri-urban growth of a theoretical city we use the CA economic
model S-GHOST [8], which takes into account residential preferences for green
space and social externalities and accordingly generates the spatial pattern of houses,
green space and a road network. Urban structures result from the process of people
choosing a residential location by maximizing their utility subject to a budget
constraint. The process reflects a trade-off between a location with surrounding
green space and proximity to public goods amenities, while minimizing
transportation costs to work in the CBD. The model uses a cellular automata
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approach in the sense that the land uses of neighbouring cells partly determine (the
conversion of) the state of each cell simultaneously. In each step, household’s utility
and bids are calculated (in line with Alonso [9]) and accordingly originally
agricultural land is either converted to residential areas or roads or remains green
space. The city is an open system with free in-migration that eventually reaches a
long-run equilibrium where all agents have maximized utility so they have no
incentive to move into or out of the area. A final structure represents the results of a
growth process considering residential preferences. The model has been calibrated
on parameters for a typical French city [10] with a resolution of 730m. Figure 1
shows the land use obtained from this benchnmark calibration as well as a situation
where residential prefrences for green space are higher, thus leading to more sprawl.

Figure 1: Resulting urban structures around a CBD for benchmark calibration in S-GHOST
model after Caruso [8]; white: green spaces, grey: residential areas, black: road network

For this study, the model is disaggregated to a 146m resolution in order to improve
its approximation towards reality and to allow for the simulation of different local
designs. These designs are related to how households would prefer to position
themselves in relation to the main distributor road. A conditional disaggregation
process is applied on the residential areas in the S-GHOST model output so that
local and city-wide residential choices are considered, resulting in structures of
varying degrees of compactness (Figure 2).

more preference for
green space

only preference for
green space

Lsprawled” wmore sprawled”

3 local preferences each

end of road first  along main road first only next to road

same preference for
green & social
amenities

~compact”

Figure 2: lllustration of residential preferences on city-wide (social & green) and local (relation
to main road) scale; local preferences termed short as “back”, “front” and “road” respectively
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Traffic and Emission Model

Based on these self-organized urban forms, the emitted traffic pollutant
concentrations caused by (one-way) commuters to the CBD are estimated within the
peri-urban environment. Traffic emissions are modeled based on average speed,
traffic activity defined by population densities, trip length as the shortest path to the
CBD from each residential cell and engine operation mode. The respective equations
for hot and cold emissions are taken from the MEET Project [11] and, where
necessary, European averages are chosen as reference values for emission
calculations.

Air quality is modeled by looking at pollutant concentrations in different discrete
time steps, meaning during a time window® up to the moment when every resident
has reached the CBD. Thus, we simulate the commuting process by sending the
residents to work in a staggered process and calculate the emissions respectively: we
assume that the residents living the furthest away from the CBD leave first since it
takes them more time. However, in order to avoid arrivals in the CBD all at the same
time and, thus, to reduce congestion potentials, staggered numbers of people at other
distances start as well in the same time step?.

Pollutants Dispersion Model

Next, transport, dispersion and removal processes are modeled which the pollutants
undergo after being emitted on the road network. Earlier studies point at the
complexity of the modeling process which also inspired many researchers to look
out for more simplistic approaches with nonetheless comparable results. One of such
attempts is the cellular automata air pollution model developed by Guariso and
Maniezzo [12] and further elaborated by Marin et al. [13]. The CA approach
accounts for the dynamic behavior and the substantial spatial variability of the
pollutants. Based on gravity, wind velocity and the characteristics of neighboring
cells, the CA simulates pollutant transportation, collision and dispersion. Due to its
simplistic and flexible representation based on a few numerical relations and its
nonetheless proofed comparability to standard complex air quality models [12] this
model serves as an inspiring approach to proceed with the calculated emission
concentrations on the roads. Instead of originally three dimensions, it has been
modified to be applied on 2D.

Inputs to the dispersion model are the emissions on the road network in each time
step, added to the current dispersed emissions. For each time step when cars are
passing through one cell the new situation is calculated®. Considering a Moore

1 We assume an imaginary time window of ~45 min in the morning between 8:00 and ~8:45
since it takes one car 13 seconds to pass one cell (146 m) at an average speed of 40 km/h.

2 Starting at the largest distance with all people living this far from the CBD, staggered in 5%-
steps with smaller distances: residents living the maximum distance away ALL start in the first
time step while staggered numbers (5% steps) of residents at all other distances start
respectively as well; in the second time step, residents at the second largest distance. ALL start
while 5% less start at the third largest distance and so on.

® Due to simplistic reasons, it is assumed that one time step (vehicles passing one cell) is
identical to one iteration of pollutant dispersion. This seems justifiable since vehicles move
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neighborhood on 2D an update rule is applied in each time step on each cell in order
to model horizontal, Gaussian-like transport based on wind speed, wind direction
and (isotropic) diffusivity [14]. Vertical transport is indirectly accounted for by
assuming a certain amount of concentration being removed in one time step due to
gravity and buoyancy. Building effects, meaning diversion of air flow due to
obstacles, is treated as well in order to consider land uses and urban structures. In
residential cells a percentage partition of the modeled concentration (based on wind
and diffusivity) into the neighboring cells which are not occupied by buildings is
assumed. This partition depends on the magnitude of building effects (scaled
logarithmically and based on population densities) and is, thus, indirectly linked to
building height and distances. Chemical processes are not included.

Exposure Model

Exposure is then estimated per residential cell. Since air flow is diverted by each
residential location (obstacle), exposure cannot be derived directly but by
considering the air quality in all its surrounding locations: calculated is the average
concentration from the neighbouring cells of each residential location (applying an
averaging filter) and the average across all time steps (Equation 1).

d 9
= 1 .
E; = EZ Z Cin R; (Equation 1)

E;;  isthe mean exposure per residential cell j in relation to
the number of residents
n s the number of time steps
d is the maximum distance from the CBD of a residential location
C;,  is the emission concentration in one cell j per time step n, considering also the
8 neighbouring locations (Moore)
is the number of residents | in the residential location

where

Results and discussion

We ran the model for CO as one of the major air pollutants caused by road traffic.
The analysis indicates that different local residential preferences implicate different
overall exposure levels and alter the distribution of air pollution across the distances
to the CBD. When people are only located along a main distributor road the air
quality situation is worst. The further people live away from the CBD, the less they
are in all designs exposed to air pollution. However, the compact scenario is linked
to higher exposure levels at the same distances across the structures. More compact
local designs implicate higher densities and less land cover change which implies a
concentrated number of residents exposed to air pollution in one residential location.
On the contrary, in a sprawled local development, few residents are exposed to air
pollution per cell.

faster with the assumed parameters (vehicle speed, resolution) as pollutants could pass one cell
(wind speed).
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In short, compact structures expose more residents to higher emission concentrations
but then vary to a larger extent with distance. Against the expectation that more
compact structures reduce the need to travel, sprawled local arrangements outweigh
this increased travel by their lower population densities and greater distance to main
roads and, hence, also emission sources.

The distribution patterns of each local arrangement in relation to distance (see
zoomed-in boxes in Figure 3) reveal that the exposure values vary not only with
changing distance to the CBD but also within a local neighborhood: due to local
design of land uses and population density, exposure values vary from one distance
to another, seemingly more for the two dead-alley designs than for the more
compact arrangement. This indicates that the residential location within a local
arrangement is also influencing besides the distance to the CBD. Figure 3c) shows
the average population exposure in function of distance which is simulated when
residents only live along a main distributor road. Exposure varies here less within a
local design due to the underlying constant local design and the distance decay is
less strongly visible. This depicts clearly the influence of local design of population
density and land uses, based on residential preferences. Distance to the CBD is a
relevant factor in terms of population exposure but its influence varies also with the
city structure and is not the only explanation for differences in population exposure
within an urban area.
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Figure 3: Mean exposure to CO across all distances to the CBD in pugm3pp, for the city-wide
residential structure "sprawled" and the three local designs a) “back” b) “front” 3) “road” (as
explained in Figure 2)

Figure 4 shows the average exposure to CO across an urban area and indicates as
well that local design matters.
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Figure 4: Mean exposure to CO per residential structure/local design, averaged across the
entire urban area and all time steps

On city-wide scale, different preferences for social and green amenities show also
that on average compact structures result in higher average exposure values whereas
more sprawled structures are linked to lower exposure values, independent of the
local arrangements. This means that moderate preferences for both, social and green
amenities, depict the worst overall situation in terms of air quality. As the preference
for green space increases, also in relation to the preference for social amenities, less
residents are exposed to air pollution due to low population densities. The more
sprawled an urban area, the lower the average exposure. This result lies in contrast
to other studies (e.g. [6] and [7]) and triggers the discussion about both, findings and
methodologies.

Compactness in other studies reveals lower exposure values because compactness is
linked to change in mode of transportation and travel behaviour, whereas this study
does not distinguish between different modes of travel and other factors like
congestion linked to residential structures. Therefore, compact development induces
more commuting traffic in a smaller area where also more people are affected due to
higher population densities. These findings suggest that beneficial effects from
compactness are on the one hand limited to a certain density threshold beyond which
density reveals worse air quality and on the other hand are linked to changes in the
composition of travel mode choices. Hence, residential structures influence exposure
but important is also the link to other factors, such as travel behavior in order to
reduce vehicle travel after Stone et al. [15]. This is akin to what Neumann [4] states:
"conceiving the city in terms of form is not sufficient [...] instead, conceiving the
city in terms of process holds more promise in obtaining the elusive goal of a
sustainable city".

Figure 5 displays a comparison of average population exposure relative to the
distance to the CBD in each structure and design. It shows the general trend of
exposure, resulting from a regression analysis. Keeping in mind that the figure
indicates a generalization, the same as above can be concluded: higher preferences
for green space yield overall lower exposure levels whereas balanced preferences
tend to expose residents to more emission concentrations, at least for compact local
designs. Although compact structures expose more residents to higher emission
concentrations close to the CBD, average values further away from the city are

288 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



Schindler and Caruso, Effects of peri-urban structure on air pollution

lower due to less distance driven and an overall smaller expansion of the city
boundaries. Exposure decreases faster with distance in compact development due to
higher population densities but the same number of residents in the total area. On the
contrary, more sprawled development implies relatively less variation across
distance. Hence, up to a certain distance, sprawled development seems better but
residents living in continuing sprawled development are more exposed at greater
distances. Therefore, compact development limits the area where exposure levels are
higher indicating a threshold to the benefits of sprawled development: up to some
extend it results in better air quality but after a distance threshold this benefit is
outweighed by increased exposure compared to compact structures. Sprawled
development reduces overall exposure close to the city but does not decrease as
much with increased distance. Not having considered congestion in the model is an
explanation for the good result of sprawled development.
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Figure 5: Regression on average exposure to CO per residential structure/local design and
distance to the CBD

The scale at which compactness is favored does matter in the discussion of urban
form and air quality and that the answer to the research question remains complex
and twofold, preventing the provision of a best-practice solution.

A widely known discussion is held about the question whether air quality is mainly
determined by the distance travelled, meaning compact structures reduce the need to
travel and therefore directly provide overall better air quality situations than
sprawled structures [15]. The here analyzed results comply partly with this
discussion since exposure levels generally decrease with increased distance to the
CBD, but additionally indicate the need for further distinction: although the distance
travelled certainly influences the level of exposure, compact structures are linked to
higher exposure despite less distance travelled. Further outside the CBD where
population densities are lower, the distance travelled impacts greater, leading to
higher exposure levels for sprawled development. Hence, the distance travelled
determines the general level of exposure but is not the only criterion for local
variations and is linked to congestion potentials and other factors. This goes along
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with findings from, for instance, Clark et al. [16] who state that "urban form could
play a modest but important role in achieving long-term air quality goals".

Still, within the modeling process certain parameters are already linked to distance.
These are, for instance, the predefined departure schedule for the commuting trips,
the emission calculation and the underlying cold distance per pollutant type as well
as wind speed which influence the results but do not determine the discovered
variations as such. Stone et al. [15] address travel speed and cold start distributions
besides distance as explanations for varying emission concentrations which are, in
turn, coupled with residential structures.

Analyzed is the interrelation between residential preferences, residential structures
and average exposure. Although there is an influence detected and quantified, the
degree of influence of urban form on air quality in relation to other factors is still to
be discussed: are other social or socio-economic factors, meteorology, topography
etc. more determining in relative terms? The promotion of public transport, for
instance, is a favored strategy to reduce traffic emissions. In comparison to this
strategy and to car-dependency, a deliberate residential structure might also seem
relevant but may not be as effective without linkage to other factors, as the results of
this study and the discussion show. Socio-economic factors have stronger bearings
on mobility behavior than spatial characteristics, which is linked to residential
choice and preferences [5]. The impact of residential structures can, thus, not be
isolated from broader societal and technological trends as already explained in
comparison with other studies [6].

Modeled are only traffic-emissions from residents commuting by car in the morning,
based on a predefined departure schedule. Neither regular traffic passing through the
area nor non-work trips are included in the simulation. Against this background, the
seemingly small changes detected between the different structures appear relevant.
Certainly, car dependency is due to simplifications overestimated which modifies
the results but unchains the approach from travel mode dependencies and, therefore,
points at the influence of the linkage of travel mode and urban structure. Local
designs do not only influence the environment directly but also indirectly through
travel behavior and spatial distributions of land cover which are mirrored in the
trends of residential choices [16].

Likewise important are the resolution of the model and the grid size to which
residential areas are disaggregated and therefore local designs are considered. This
question of the degree of aggregation and, thus, scale has a noticeable influence on
the model, reflected in the scale on which preferences are considered. This is an
important finding and points at the necessity to distinguish in the discussion about
residential choice. Further, emissions from all vehicle sources in each grid area are
combined together into a larger area source, assuming that emissions are uniform
over that particular area.

Placing the study within its limited context, it proofs the compatibility of the model
types and the findings from the here presented simplified modeling approach open
up the field for further discussion and extension of this research in spite of the
assumptions discussed.
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Conclusion

We investigated the link between residential preferences and traffic-induced air
quality within the discussion about sustainability and the design of future cities. We
analyzed whether the preferences for social and/or green amenities within residential
choice and, thus, residential structures, impact air quality in an urban area.
Following state-of-the-art research by e.g. [6], our work expands the research by
modeling not only the influence of city-wide residential structures but also of local
designs and their induced population exposure from commuter's traffic.

A theoretical modeling approach has been developed, coupling a residential choice,
traffic generation and pollutants emission, pollutants dispersion and population
exposure model. Running the model on different residential structures with varying
degrees of compactness city-wide and locally for CO indicates that residential
preferences do matter.

Driving factors are hereby scale and distance to the CBD at which preferences are
considered, although distance is not the only determining factor. With increasing
distance to the CBD, population exposure decreases, no matter the degree of
compactness. However, the difference across distances is higher for more compact
structures compared to sprawled development. Preferences for green and social
amenities implicate different impacts on population exposure which points at the
importance to distinguish between local and city-wide designs. Besides state-of-the-
art findings that the overall city form impacts air quality, this study shows that also
local designs do play a noticeable role. Our study suggests that the overall city form
is most influencing on air quality, followed by intra-urban residential structures and
local designs.

In contrast to findings from other studies compact development with high population
densities entails on all scales highest population exposure to CO. This suggests a
limit to the gains of compact structures due to e.g. more trips with colder engines. It
triggers the discussion on the benefits of compactness in spatial planning and adds a
critical viewpoint on the belief that more compactness in planning is directly linked
to better air quality in urban areas. Structure needs to be linked with, for instance,
varying travel mode respectively in order to reduce exposure to air pollution.
Although elaborate urban structures comprise the potential to mitigate air pollution,
they do not ensure better air quality alone but have to be coupled with other
strategies.
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Abstract

With an increasing interest and use of CA-based land use models in the planning and
policy practice, calibration and validation gain in importance. Calibrating CA
models, however, remains an ongoing challenge. Despite several attempts to develop
(semi-)automatic approaches [1, 2], manual calibration, especially for calibrating
land use change models with multiple dynamic land uses, remains the common
practise [3]. Although there are numerous papers that discuss CA models, only few
cover their (manual) calibration process, and a common knowledge base seems to be
lacking. This presentation aims to start such a knowledge base by presenting a
method for calibrating CA-based land use models, which has been developed over
the past 25 years and builds on work by a number of people who have calibrated the
Metronamica land use model [4, 5, 6] in its current or preliminary forms [7, 8, 9,
10]. In this methodology the calibration process is approached broader than the
setting and fine-tuning of parameters, and includes all steps related to finding an
appropriate parameter set and assessing its quality.

The calibration process follows a number of steps in line with common calibration
practices and the characteristics of CA-based land use models:

1. As part of the data analysis the current situation and historic developments
are analysed. This includes analysing the temporal change in total area
surface for various land uses as well as the change in landscape structure.
Regarding the latter, metrics such as the clumpiness index [11] and the
rank size distribution [12] are used in conjunction with a visual inspection
of the developments. Furthermore, the enrichment factor is used to analyse
the over- and underrepresentation of certain land uses in the
neighbourhood of changed land uses [10].

2. Model set-up includes a set of choices relevant for setting up the model to
a specific region and context. In CA-based land use modelling main

* Institute for Environmental Studies and Amsterdam Global Change Institute, Amsterdam,
The Netherlands
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choices are related to the decision on the area extent, the applied resolution
and the selection of land use classes to be modelled, where finding a
balance between providing additional information and creating a false
sense of accuracy is often a crucial point of discussion [13].

3. During the calibration, parameter values are set and fine-tuned and
subsequently the model is assessed on its behaviour and results, frequently
over a historic calibration period. Difficulties in calibrating CA-based land
use models mainly relate to the large number of parameters that need to be
set, the limited availability of time series of land use maps, and finding
objective ways to assess the quality of the calibration. Regarding the latter,
progress has been made over the past years, which has resulted in the use
of neutral models to act as a benchmark for quality assessment [14],
together with the use of objective measures to complement the more
subjective visual assessment. To assess the quality of the calibration we
take into account the predictive accuracy, which is the ability of the model
to accurately simulate actual land use patterns; and the process accuracy,
the extent to which the modelled processes are consistent with real world
processes [15]. Main indicators used for assessing the quality of the
calibration are indicators for location agreement, such as Fuzzy Kappa
[16] and Kappa Simulation [17]; indicators for landscape structure
agreement, such as the clumpiness index [11], the fractal dimension [18],
the rank size distribution [12], and the enrichment factor [10]; and visual
inspection.

4. During the validation, the model's behaviour and results, based on the
parameters settings obtained during the calibration, are assessed over a
data set independent from the one used as part of the calibration. This
usually results in an evaluation of the model's behaviour over a different
historic period; although other independent data sets are equally valid, see
e.g. [19]. Assessment criteria are the same as for the calibration.

5. Finally the model is tested and evaluated on its long-term behaviour,
which includes a long-term simulation with the calibration parameters, a
number of tests with extreme scenarios to assess the robustness of the
model and a number of tests to assess the sensitivity of model results on
small changes to the parameter settings.

During the presentation the details of the methodology will be discussed using an
application to Madrid, Spain.
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Abstract®

The study of spatial systems, such as urban systems, and Land-Use Science have
been profoundly transformed in the last two decades by the emergence and spread of
cellular automata (CA) models designed to simulate future land-use patterns from a
bottom-up perspective. The fundamental elements in CA models are individual
spatial units defined by their location, geometry, and attribute that evolve through
time and over space according to the influence of their neighbors and some external
factors. The aim of CA modeling is to capture this influence through a set of rules in
order to generate meaningful patterns that represent possible paths the spatial system
being simulated can take in the future. If well designed, CA models can inform on
the processes that govern urban growth and land-use dynamics and can be used to
explore future outcomes through the testing of alternative scenarios. However, to be
useful, the architecture and implementation of these models, along with their
assumptions must be stated in an explicit way in order to be understood and
evaluated by the scientific and users’ communities. In addition, adequate techniques
must be applied to verify to what extent the estimations of both quantity and location
of change provided by CA models can be trusted. The objective of this paper is
twofold: 1) to highlight some of the key assumptions in CA modeling, and 2) to
describe the progress recently made in attempts to meet these assumptions.

Assumption 1: The spatial units used in CA models adequately represent the
meaningful geographical entities that compose the system being simulated. Recent
advances: Moving from the arbitrary, fixed cell grid representation to an irregular,
flexible entity-based representation (Bithell and Macmillan, 2007; Pinto
and Antunes, 2010; Wang and Marceau, in prep.).

Assumption 2: The neighborhood adequately corresponds to the zone of influence of
each spatial unit composing the system being simulated. Recent advances: Moving
from a rigid topologically-based neighborhood definition to a flexible semantic
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definition adapted to each entity being represented (Moreno et al., 2009; Van Vliet
etal., 2009).

Assumption 3: The historical dataset used for the empirical calibration of CA models
is of good quality, i.e. is free of errors and has been acquired at the right time and at
the right spatial scale. Recent advances: It has been demonstrated that the quality of
the datasets used for the CA calibration can greatly affect the simulation results
(Pontius and Petrova, 2010; Pontius and Li, 2010; Van Dessel et al., 2011).
Assumption 4: The transition rules built from historical datasets adequately capture
the land-use dynamics; this involves an appropriate selection of driving factors
(parameters), their values, and their combination. Recent advances: Numerous
calibration techniques have been tested ranging from simple statistical and
probabilistic methods to sophisticated computational intelligence techniques (Feng,
et al. 2011; Feng and Liu, 2012). Systematic comparison of some methods is
being done (Lin et al., 2011). Interactive and visual methods including some
based on fuzzy logic that provide geographically-meaningful rules are being
proposed (Hasbani et al., 2011; Stanilov and Batty, 2011; Liu, 2012; Mantelas et al.,
2012). Assumption 5: The trends in land-use dynamics and the factors driving these
changes detected from historical datasets remain constant over time. Recent
advances: Studies illustrated that such temporal stationarity is uncommon in many
land-use systems and that this may affect the performance of CA models (Bakker
and Veldkamp, 2011).

Following this review and illustration, recommendations for future research in
land- use CA modeling will be provided.
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Abstract

To support planners and policy makers in confronting the complexity of land use
changes in Flanders, a dynamic, high-resolution land use model has been developed.
It enables a better understanding of the main drivers and autonomous dynamics
causing land use change and, as a prognostic instrument, it supports the design of
planning instruments as well as the assessment of the potential effectiveness prior to
the implementation. It allocates demands for space by the population, aggregated
economic sectors, agriculture, and nature.

The model is a constrained cellular automata land use model (White and Engelen,
1993) consisting of linked sub-models representing spatial dynamics in Flanders at
three geographical levels. At the Global level, Flanders and Brussels are represented
as one entity subjected to exogenous influences and change. Trend lines determine
growth in: population, employment in 10 aggregated economic sectors, land
demand in 5 agricultural sectors and finally land demand for 11 natural land uses.
These trends are obtained or computed external to the model as part of dedicated
scenario exercises. At the Regional level, Flanders and Brussels are represented in
terms of the 23 constituting arrondissements (EU-NUTS3 regions). A dynamic
gravity-based model allocates and reallocates the populations and jobs, obtained
from the global level, and computes the associated changes in population and
employment densities. For each arrondissement, it passes on to the Local level the
amounts of land needed to allocate the population and jobs per sector. Finally, at the
Local level, Flanders and Brussels are represented as a regular grid of cells
measuring 1 ha. Cells are in one of a maximum of 36 states representing their
dominant land use. A cellular automata model determines the evolving land use of
the individual cell based on the spatial interactions among the land uses within its
immediate neighbourhood, constrained by institutional, physical and transportation
characteristics. Apart from the changing land use, a series of custom-definable
spatial indicators encapsulating economic, social and environmental qualities of the
modelled spatial system are computed. Like the land use, these indicators are
calculated on a yearly basis, thus resulting in time series of maps as well as
aggregated synthetic index values.

The model makes extensive use of statistical and GIS data. In the absence of a map
of sufficient quality, a dedicated land use map was compiled based on a rich set of
GIS data layers obtained from various data providers in the Flemish, Belgian and
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Brussels administrations. It represents land uses in Flanders and Brussels in 2010
classified in some 50 categories at a 10m resolution. The model has been
extensively calibrated among others by means of hindcasting. It was further
calibrated against the outcomes of the so-called PLANET model of the Federal
Planning Bureau. Finally the morphogenetic capacity of the model and the spatial
configurations generated are validated by applying Zipf’s rule on the rank-size
distribution of urban clusters.

During the past two years, the model has been used in several policy exercises
requiring insights in land use developments as much as 40 years into the future.
Impacts of current, intended or optional policies were assessed to raise new
challenges for policy making and management in among others spatial planning,
green energy production, flood prevention, and the estimation of ecosystems
services provided by the Natura 2000 areas. New applications which are currently
under development include dynamic coupling with feedback to a transportation
model and a hydrological model in support of on the one hand mobility studies, and
on the other, integrated river basin management.

In the presentation, the structure and underlying principles of this constrained
cellular automata land use model will be briefly discussed. Results of a scenario
exercise carried out for the Ministry of Spatial Planning will be presented. Four
contextual scenarios 2010-2050 similar to the worldviews of IPCC-SRES were
developed and analysed with a view to provide input for the new Spatial Policy Plan
Flanders (Beleidsplan Ruimte).
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Abstract

Urban cellular automata models were first developed as ways of operationalizing
generative processes involving urban morphologies as, for example, in simulating
fractal growth. In one sense, they have become part of the wider movement
towards articulating cities as complex systems, and they tend to be part of the move
from aggregate and static, cross-sectional models to those dealing with more
disaggregate populations and dynamic behavioral processes. They currently tend to
be associated with agent-based models for which they might be regarded as a
special case but their comparative simplification and focus on the physical
development of cities tends to have elevated them into a form that means that are
being considered for use in prediction. In general however although there are
many packages which have been fashioned to operationalize such models, their
use in practice is patchy in that most urban agencies find them hard to use in that
their predictive focus is highly physical and often non-numerical. In contrast to
static, aggregative land use transportation models, their usage has been limited.

In this paper, we will review the state of the art of urban in CA models. We will in
particular examine the assumptions involved in their validation and verification,
arguing that most such models do not articulate the processes that relate to land
development that should strictly be part of the changes of state in development that
such models seek to represent. We will argue that the starting point for most
such models which is physical development and morphology is the wrong point of
departure and it is the processes of change per se that should be the focus, difficult
though this is. The key problem is that although processes of development drive
physical CA models, there processes are rarely made explicit or if they are they are
highly simplified. They are not validated in any sense for the calibration of such
models is against spatial outcomes, not against the fact that such processes can
be examined in practice. In short, processes are assumed but not tested for often
data is simply absent. Hence calibration against model outcomes can often be
spurious in that we know that models with multiple processes and many
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interactions can generate similar patterns in many different ways. This is part of
the problem of equifinality which means that the same patterns might be
reproduced using very different processes. Currently unlike in the case of land
use transport and spatial interaction models where there has been substantial
research into the modifiable areal unit problem, there is no equivalent analysis or
approach inthe development of CA models.

In the paper, we will catalogue these and many other problems, suggesting
strategies for their resolution and suggesting changes in approach. We will list a
series of issues with respect to their application and we will attempt to figure out
what are the most appropriate conditions under which such models might be
developed. This will involve not only scientific credibility but also practical
applicability in the wider context of applications to policy making, prediction and
planning support. In one sense, we take this paper as an updating of our earlier
papers which have sought to review key problems in this filed [1, 2]. In this sense,
we see this paper as a ‘progress report’.
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Abstract

A rapid urbanization process in a lake watershed is always accompanied by great
land use/cover change and its subsequent effects on the local eco-environment.
Therefore, urbanization process in a lake watershed should be controlled to avoid
serious deterioration of ecological system. The urbanization process control usually
is carried out through establishing appropriate urban land-use planning and policy.
Scenario, as a link of uncertain future with given policies, is a popular method in
policy planning and make-decision. In region or urban areas, scenario is always
connected with Cellular Automata (CA)-based geosimulation system, which can
produce multi-scenario forecast for the future. SLEUTH is one of the famous
geosimulation systems which have been used for policy make-decision in many
cities around the world. The purpose of this study is to explore the feasibility of
SLEUTH in land-use policy decision-making in a large lake watershed — the Lake
Dianchi watershed in Yunan-Guizhou Plateau of Southwest China.

Lake Dianchi is located in the Yunnan-Guizhou Plateau of southwest China in the
upriver area of Yangtze River. Lake Dianchi is the largest freshwater lake in the
Yunnan-Guizhou plateau and is the sixth largest body of freshwater in China with a
total area of approximately 300 km? and a total watershed area of approximately
2834 km?. Since China adopted the well-known “open-door” policy and economic
reform in later 1970s, the near-shore area of the lake Dianchi has experienced rapid
progress in industrialization and urbanization which has resulted in regional eco-
environmental degradation, loss of bio-diversity, extreme deterioration of water
quality of Lake Dianchi, and so on. For example, water quality in Lake Dianchi is
greatly polluted into serious eutrophication. Such degree of the deterioration of eco-
environment and water quality is a great threat to the ecological safety and
sustainable socio-economic development of the southwest region of China.

This study adopts a series of Landsat images, including Landsat Multispectral
Scanner (MSS) images with a spatial resolution of 57 meters taken in January of
1974, and Landsat Thematic Mapper (TM) images with a spatial resolution of 30
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meters taken in January of 1988, April of 1998 and 2008. These images have been
processed through geometric and radiometric correction. The Landsat MSS image
of 1974 was resampled into 30 meters to maintain the consistency of the image’s
resolution in the time series. Furthermore, a high-resolution image in 2008 covering
the main urban area of Kunming city was collected as the reference of field work,
real Region of Interest (ROI), and extraction of land use/cover pattern.
Classification maps of the Dianchi watershed in 1974, 1988, 1998, and 2008 were
produced to be used in system calibration for SLEUTH. Then, six land-use policy
scenarios were established for land-use policy decision-making in the Lake Dianchi
watershed: 1, to inherit past land-use policy without changes; 2, to use the least land
for ecosystem protection; 3, to establish three ranks of urban development area for
controlling urban sprawl; 4, to mix ecosystem protection and urban development
control; 5, to control urban sprawl for agricultural land protection; 6, to promote
urban develop through multi-centers. These six land-use scenarios were produced
respectively from 2008 to 2028 for every year using the calibrated SLEUTH system.
The produced scenarios for year 2013, 2018, 2023, and 2028 were assessed using
landscape metrics and fractal dimension. The results show that the fourth scenario
not only controls urban sprawl but also keeps appropriate urban morphology for the
Lake Dianchi watershed. Other land-use scenarios also show themselves urban
development characteristics. This study testifies the feasibility and advantage of
CA-based geosimulation system for land-use policy decision-making in a lake
watershed.

* This work was supported by the National Natural Science Foundation of China
(No. 40901090 and 41101152), the Talents Introduced into Universities Foundation
of Guangdong Province of China, and the Scientific Research Foundation for the
Returned Overseas Chinese Scholars, State Education Ministry.
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Abstract”

Cellular Automata (CA) have been intensively used in the last decades to simulate
urban growth in cities. This is based on the fact that the suitability of a given
location for built-up areas is highly dependent on the characteristics of the
neighbouring locations, particularly on whether they are already urbanised or not.
CA and Geographic Information Systems (GIS) have recently become an instrument
for modelling the temporal dynamics of urban areas. Nevertheless, they have not yet
been extensively used in Latin American cities.

The prediction approaches for urban growth in cities are diverse. Some use
probabilistic CA, while others define appropriate deterministic rules by hand, or use
statistical tools to determine the CA transition rule, etc. Calibration parameters
usually are the neighbouring radius, the random degree, or the influence of a given
geographical feature. But up to our knowledge, the influence of the time scale, i.e.,
the number of years that a single CA iteration represents, has not yet been studied.
Since accumulative effects of the CA dynamics are relevant in the CA theory, we
think it important to explore the CA effect on urban growth models in different time
scales.

In the present work, we adopt the approach of Aguilera (2006), who runs a
Geographical Logistic Regression to estimate the probability of a cell to become
urbanised, and then it will urbanise only the most probable cells up to fill the real
amount of surface growth. We repeat this methodology iteratively, in order to look
at the CA effects. We apply it to predict the urban growth the Metropolitan Area of
Concepcidn, Chile (MAC), from 2000 to 2009, and we compare the results.
Description of the model

" This contribution has its references in an ‘Author-Date’ format.
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As independent variables, we considered

- X;: the density of the cell (people/m?).

- Xo: the altitude of the cell (m).

- X3: the number of urbanised neighbouring cells in 2000.

In a previous work by Rojas & Plata (2010), the selected geographical factors were
distance to urban centres and roads, density and altitude; but a statistical analysis
showed a strong correlation between the distance to urban centres and roads, and the
number of urbanised neighbouring cells, which is an important variable for the CA
models. The neighbourhood was chosen as the Moore's square neighbourhood, and
the radius was determined by analyzing the error of the model for several different
options, being 3 the most accurate.

The data was obtained by:

- Urbanised cells: by Landsat satellite images from 2000 and 2009.
- Density: from 2002 census blocks data.
- Altitude: from Digital Elevation Model (DEM).

The dependent variable is the binary variable: urbanised or not between 2000 and
2009.

From this data we ran a Geographical Logistic Regression with the software Matlab
in order to obtain a formula for the probability of a cell to be urbanised [3].

P(X1,X2,:X3)=Bo+ BaXat BaXo+ PaXs (1)
The software produced the following values (only 5 digits showed).
Po=-1.6717
$1=0.0002

B,=-0.0146
Bo=0.1248

Then we computed the total number of urbanised cells in 2000 and 2009, ny and nr,
and consider a linear growth model for this quantity.

n= not at, for t varying from 0 to T.

We repeated the following steps T times:

1: compute the probability distribution through Eq.(1),

2: choose the o, most probable cells,

3: add them to the urbanised cells, and

4: compute, for each cell, the new number of neighbouring urbanised cells.

We restricted the cellular space to the set of allowed cells. As a consequence, we
discarded some urbanised cells belonging to a disallowed surface.
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We applied the method in one, three and nine steps and we compared the results.
The next figure illustrates our results.

T=1 step T=3 steps T=9 steps

Figure 1. Comparison of actual and simulated urban area for three different values of T. Green
colour represents the urban area which is correctly predicted; the urban surface which is not
predicted appears in orange, and the blue colour is used for the wrongly predicted pixels.

As quality measure we have used the rate of correctly predicted cells over the total
urban growth (success rate), and the areal fractal (Barredo et al., 2003; Tannier &
Pumain, 2005). These indices are showed in the following table.

Table 1. Quality indices for the three experiments.

n | 1 3 9
Success rate 46% 50% 51%
Fractal dimension 1.3116 1.2908 1.2769

The figure and the table show how the success rate increases with the number of
iterations, while the shape of the predicted urban area has smoother boundaries than
the real one. The fractal dimension confirms this remark. We can see that this value
decreases with the number of iterations, moving away from the real fractal
dimension of the MAC urban area, which gives 1.3273 in 2000 and 1.3489 in 2009.
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From ocular inspection, we see some orange persistent areas, which could be
explained by the influence of variables that we had not used. Specifically, the
distance to roads could explain the orange areas because these new urbanisations are
entirely related to the tentacular model of growth. Blue areas which are wrongly
predicted in the simulation on one step disappear when more steps are considered,
because the highest number of steps are used, the smaller is the growth at each step,
thus maintaining the new simulated cells near the urbanized area.

The use of a smaller time scale in the cellular automata model can reduce the error,
but the present transition rule has a smoothening effect when applied iteratively.
Maybe a similar study would give better result using other CA rules.
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Abstract

The problem of the modifiable areal unit (MAUP) is well known in geography and
geostatistical analysis. The aggregation of the information in spatial units to build
geographical models influences the final value assigned to these units. Raster
models based on cellular automata are not free of this problem. In their application
errors are introduced by aggregation the data and converting shape files into a
regular grid. The choice for the grid approach, the selection of the cell size and the
aggregation method used all influence the behaviour of the model and hence its
simulation results.
In fact researchers concerned about the impact on analysis results of variation in
spatial scale in cellular automata models have started to measure it. The objective of
this study is to assess how spatial scale affects a dynamical urban land change model
based on cellular automata. An application was developed for the Madrid
metropolitan region using the Metronamica software. From a detailed land use
geodatabase (1:5000) land use maps of three time periods (2000, 2006 and 2009)
were available. This data was used to set up applications with a cell size of 25 m., 50
m., and 100 m., which were calibrated and validated, subsequently.
Calibration was performed based on an analysis of historic data (for the period 2000-
2006) and expert judgement. Validation was performed over the period 2006-2009.
In assessing the calibration and validation focus was given to the results as well as
the shape of the interaction rules. To assess the results use was made of the Kappa
Sim metric for the accuracy assessment of the locations and the Cluster - Size
frequency distribution to assess the patterns of the urban clusters. To assess the
shape of the interaction rules, we investigated the over and underrepresentation of
land uses in the neighbourhood of locations that showed changes in land use
between two periods. Comparing the measured over and underrepresentation against
the simulated over and underrepresentation helps to fine-tune the interaction rules
and assess the modelled process by looking at the agreement between both analyses.
As part of the sensitivity analysis to test the impact of the selected scale, the
following steps were conducted:

1. Calibration of the application at 50 m.
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2. Application of the neighbourhood rules obtained during the calibration
under 1 to the applications using 25 and 100 m. resolutions and assessing
the results.

3. Fine-tuning the calibration of the application at 25 m.

4. Application of the neighbourhood rules obtained during the calibration
under 3 to the applications using 50 and 100 m. resolutions and assessing
the results.

5. Fine-tuning the calibration of the application at 100m.

6. Application of the neighbourhood rules obtained during the calibration
under 5 to the applications using 25 and 50 m. resolutions and assessing
the results.

This analysis provides us with two types of information. Firstly we can evaluate at
what resolution an application for Madrid obtains the best calibration and validation
results (using information from steps 1, 3 and 5). Secondly we can evaluate the
sensitivity of a rule set calibrated for a specific resolution to a different resolution.
The presentation will focus on the process and the results of this study.
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Abstract

We present a residential choice simulation for localizing existing (Po) and future
(Py) household agents within the Grand Duchy of Luxembourg. MOEBIUS
(MObilities, Environment, Behaviour integrated in Urban Simulation), a multi-
institution project, aims to simulate Luxembourg’s future (2025 / T;) urban
development across multiple policy driven scenarios. This presentation focuses on
distributing existing populations (P, at Ty) and locating future growth (P, at Ty).
Luxembourg is experiencing rapid growth, high housing prices, large numbers of
daily cross-border commuters and extensive road congestion. Recent urban growth
has intensively consumed arable land in locations that road infrastructure is
struggling to support. In this context our research partners upstream are
providing spatial and synthetic population data for our work in determining urban
population distributions, which we provide to our downstream partner to model
potential future commuting and congestion patterns. This analysis flow is applied
to integrated (sustainable) development, business as usual and pro-growth scenarios
(S1-a).

Localization of P, agents at T, is dependent on spatial attributes determined
through a cellular automata (CA) kind framework and network distance
accessibility. A synthetic population [1] containing 170,000 active (employed)
agents within 110,000 households provides the data from which to determine agent
location preferences. Households and individuals are allocated using an economic
residential choice agent-based model, inspired from Caruso et al. [2] and adapted to
heterogeneous households and finite population sets. This process is replicated at T,
with population growth, Py, across multiple scenarios, S;.3, using more complex
methodologies.

Agent placement is dependent on four factors: Spatial attributes, network
accessibility, agent preferences and the remaining agents in the synthetic
population.
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Spatial attributes (e.g., green space, urban and population density) are calculated
using neighbourhood functions. Accessibility is based on road network distance to
services and work destinations. The economic residential choice model allows
agents, based on their preferences, to weigh tradeoffs, such as distance to
work, urban density and proximity to green spaces, in terms of utility in order to
bid. The residential model uses a market clearing method adapted from Fujita [3],
applied recursively across households groups, in order to generate agent locations,
rents, and utility levels.

The implantation of future urban growth agents brings new challenges. Areas
available for growth of various densities have been processed into empty
residences arranged in an irregular spatial structure. The residences are then filled
on demand by agents. We created the new residences using a recursive CA space
filling algorithm. While initial population, Py, are specified at communal scale, P,
forecasts are national. In order to provide a balanced future population distribution
we performed regressions on urban indicators that impact residential price and
extracted communal residuals for the predictive model. We have also implanted a
congestion model provided by our downstream partner based on our T, output to
improve accessibility attributes. Although these new factors created new attributes
and considerations for agent preferences, the economic model and market clearing
mechanism remained the same. The final synthetic population allocation for each
scenario shows spatial variations in rent and utility as well as differences in socio-
economic class well-being.
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to submit full papers that will go through a peer-review process and will be
published in the associated journals. Short papers must follow the rules described to
guarantee a high quality of the book of proceedings. Each short paper must not
exceed 4000 words due to editorial reasons, including title, authors and their
affiliations, and references. Page size must be A5 with the following margins: 2 cm
on top, bottom, left and right. Title must be in Times New Roman bold, 14pt,
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Abstract

An important issue in CA modeling is the impact of neighborhood structure on
automaton dynamics. The Schelling’s spatial proximity segregation model [1], [2]
can be used to analyze this influence.

Schelling illustrated the emergence of a highly organized phenomenon, segregation,
from the combination of individual behaviors based on a demand of similar
neighbors. By varying neighborhood size, Schelling explained that the tendency to
segregate is more attenuated in largest neighborhoods than in smallest one’s,
because satisfactory patterns are more easily found. Laurie & Jaggi [3] showed that
this is true at intermediate levels of individuals demand. On higher levels of demand,
an increase of the neighborhood size produces an increase in non-satisfied
individuals, so the model stabilizes later and the final pattern is more segregated.
More recently, graph-based (or reticular automata) has been used to include non-
regular neighborhoods in automata. In these models the regular lattice of cells is
replaced by a graph describing the complexity of proximity relationships in urban
environments [4], [5], [6], [7]. This relaxation of cellular automaton definition
permits to integrate the anisotropy of urban space due to the spatial configuration of
buildings and the transportation networks in local-scale studies.

SMArtSegreg model [8] was implemented to test the Schelling model in different
theoretical graphs. Simulation results reveal that presence of cliques attractors in
networks. Hierarchical networks, like scale-free or fractal networks are more likely
to allow segregative structures at low-levels of individuals demand than regular or
random graphs.

Remus model [6], [7], permits to include real urban patterns and road accessibility in
a graph-based cellular automaton. The model replaces cells by buildings polygons in
the cellular automata and it creates neighborhood graphs, based on road network
accessibility between buildings, that are used to define their neighborhoods.
Simulations on real urban patterns show that dense areas reach stable configurations
later than sparse one’s, confirming Schelling’s and Laurie and Jaggi’s hypothesis.
But results show also that urban structure seems to have a strong influence on the
spatial distribution of population clustering. The main crossroads, corresponding to
the best-connected nodes in urban graph, represent attractors for clustering:
buildings in the crossroads proximity are more connected, and aggregate in larger
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clusters. Segregation dynamics are controlled by poorly connected zones separating
well-connected ones.

This two models reveal the fact that segregation dynamics depends on the size of
neighborhoods, but also in the spatial distribution of neighborhood sizes. This
conclusion can be used by urban planners to conceive less segregative urban
patterns. Reticular automata are useful tools to improve comprehension of
phenomena constrained by proximity effects, like intra-urban processes.
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Abstract

The ambiguity of the spatial entitation is a fundamental issue in cellular automata
models (CA). However, theoretical approaches to the issue are quite rare. This paper
presents a new approach to local interaction in cellular automata models that links
the theories of gravitation, accessibility, fractality and space syntax. In classical
cellular automata (CA), spatial relations are defined through neighbourhood
definitions, which determine the spatial structure of the CA system. In applied CA,
strict definitions of neighbourhood in “pure” CA are often relaxed, but no
extensive/uniform theoretical formulation has been presented on the means of
relaxations. Typical relaxations include statistical rules used in larger
neighbourhoods and macro-level spatial constraints, which are based on econometric
models. This paper discusses how these different methodologies defining spatial
relations can be applied to the interaction in cellular spaces. We suggest that a
generic framework of spatial separation can be formulated by exploiting well-
established spatial theories in order to strengthen the theoretical basis of implicit
assumptions in the neighbourhood definitions of CA models.

By definition, local interaction creates another theoretically challenging issue;
namely, the scalarity of the spatial interaction, how the interactions of different
scales can be included in one model, and exactly how “local” the local activity really
is. The fractal nature of urban networks can be a key to the interaction between the
spatial networks of different scale levels. Certain spatial entities intuitively seem
very “natural” from the CA model perspective (such as houses, lots or blocks), but
the question remains as to whether they are suitable objects for describing the
interactions of all levels. The ontological ambiguity becomes more obvious when we
observe any model that manipulates larger region-based information. While the
geometrical definition of a region is trivial, its corresponding geographical
counterpart is far from that. Regions are formed on the basis of similarity of
observed phenomenon, but the similarity-norm to create crisp entities does not
automatically fit with the aggregation.
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In terms of spatial separation, the long tradition of gravitation models defines the
distance decay between the spatial entities. The gravity measure takes into account
population or other attractive features of urban environment. There is a clear need to
identify more sophisticated methods of forming the spatial representation other than
abstract tessellation, such as rectangular or hexagonal grid, in order to achieve more
sensitive results of the simulation. The paper discusses the extension potential
towards a few classic theories that are all implicitly attached to neighbourhood and
scale.

The best known examples of the spatial relativity phenomenon are gravitation
models and their derivatives, which are more generally known as Spatial Interaction
Models. The key idea and importance to geography of these models are expressed in
the so-called Tobler’s law, which states: “I invoke the first law of geography:
Everything is related to everything else, but near things are more related than distant
things”[1]. The same principle is behind concepts such as the attractiveness of the
space, the friction of space or distance decay. Joutsiniemi [2] recently observed this
principle in a crisp, street segment-based network model. Joutsiniemi also showed
that the configurational approach of the so-called “space syntax school” [3] has
similarities with gravitation models and how this can be interpreted as generic
spatial accessibility.

The current paper presents an experimental sample model that uses the cellular
space derived from a disaggregated transportation network instead of grid
tessellation. The interaction in the model is based on the dynamically changing
neighbourhood definitions. The disaggregated data and relaxed neighbourhood
definitions enable the use of CA framework in a more concrete way and more
realistic interaction rules. The restrictions set by the computational capacity to use
more and more disaggregated data are gradually dying out. They are being replaced
by an expanding variety of different parameter combinations that cannot be tested,
not because of the capacity itself but because of the capacity of the model user to
handle the variety of simulation results. This heightens the importance of the
selection of parameter combinations.

References

[1]  Tobler, A. (1970), A computer movie simulating urban growth in the Detroit
region. Economic Geography. Vol. 46, pp. 234-240.
[2] Joutsiniemi, A. (2010), Becoming metapolis - A configurational approach. Datutop Vol.
32.
[3] Hillier, B., Hanson, J. (2011), The Social Logic of Space, Cambridge University Press.

322 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012



Veerbeek et al., Exploration and exploitation in urban growth models

Exploration and exploitation in urban growth
models

Optimizing CA-based urban growth models using a memetic algorithm

William VEERBEEK®?; Taneha BACHIN"?2: Chris
ZEVENBERGEN!?

1Flood Resilience Group, Dep. Water Science and Engineering,
Westvest 7, 2611 AX, Delft, Netherlands
+31 15 2151844, w.veerbeek @floodresiliencegroup.org
2Hydraulic Engineering, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Stevinweg 1, 2628CN, Delft, Netherlands
3Department of Urbanism, Faculty of Architecture, Delft University of Technology
Julianalaan 134, 2628BL, Delft, Netherlands

Keywords: urban growth modelling, memetic algorithms, genetic algorithm, local
search, dynamic maps

Abstract

During the past century, spatially explicit urban growth models (UGM) have
evolved from regional economic models, Markov-Chain driven probability matrices
to machine learning driven cellular automata (CA) based models. Machine learning
driven CA-based UGMs use supervised learning algorithm to optimize land use
transition rules using regression techniques on historic geographic data. Although
this method has achieved significant improvements during validation, the applied
machine learning algorithms are often specifically designed to operate within the
domain of urban simulations. Many UGMs that incorporate neural networks, support
vector machines or genetic algorithms to ‘learn’ underlying rules of geographic
pattern formation are ‘off-the-shelve’ products that are not especially optimized to
deal with the specific constrains posed by within an UGM context. One of the major
problems is the large number of candidate solutions provided by the algorithms
needed for optimization. This is often due to the fact that many machine learning
algorithms excel at exploration (searching through the search space) but show
limited effectiveness in exploitation (finding local optima). For instance, to reach a
satisfactory level of accuracy, a standard genetic algorithm requires an extensive
population of differently parameterized UGMs in combination with a large number
of iterations. Since, CA based UGMs for large metropolitan areas often consist of
10s of millions of individual cells, the validation sequence for an individual growth
model that defines the model’s fitness (e.g. kappa coefficient based similarity
indices) is computationally expensive. This often limits the systematic development
UGMs.

In search of higher levels of accuracy, in the past years CA based UGMs have been
extended by agent-based models that mimic urban metabolic flows as well
behavioural aspects of urban dwellers (e.g. traffic models). Although this might
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seem intuitive, this also increases the model’s complexity, the subsequent control
and manageability. Yet, CA based models often do not exploit implicit patterns,
rules and potential correlations that can be found within the geographic data used to
drive CA based models. While it is fairly common to incorporate static morphologic
data (e.g. elevation, slope), infrastructure related data (e.g. proximity to main roads)
as well as other explicit urban drivers for growth, the use of ‘hidden structures’ like
for the distribution of urban cluster locations are often limited. Yet, these ‘hidden
patterns’ might provide additional information that improves the accuracy of the
UGMs.

For this study we developed a so called memetic algorithm; a combination of a
standard genetic algorithm and a local search ‘hill climbing’ function. While the
genetic algorithm is used for the exploration of the search space using common
techniques like arithmetic recombination and mutation, the ‘hill climbing’ algorithm
searches for local optima by improving the candidate solutions (i.e. exploitation). In
practice, this means that all candidate UGMs are optimized to provide the ‘best’
solution within a local search space. The model has been developed using the
Dinamica-Ego platform for dynamic GIS and has been applied to greater Beijing,
CN. Dinamica-EGO provides a Bayesian probability based ‘weight-of-evidence’
methodology to regress land cover transition rules. The model provides two
constrained CA-based cell transitional modules: the ‘expander’ and ‘patcher’. While
the expander develops land patches from existing land cover classes (i.e. mimicking
urban extension) the ‘patcher’ initiates disconnected land cover transitions (i.e.
leapfrogging development). The modulation of growth rates for the two modules is
controlled by a third module. All three modules require substantial parameterization.
The optimization of the parameters is controlled by the mimetic algorithm. Apart
from a set of common thematic layers (e.g. slope, proximity to infrastructure), the
model uses a set of dynamically generated layers; during each iteration, a urban
cluster analysis is performed that is used as input for the next iteration. An additional
problem encountered during model development was caused by the independency of
transition rules. While the model uses three land cover classes to identify urban
areas (i.e. low, medium and high density built-up areas) the transitions to and
between these classes were treated independently. Although high levels of accuracy
were achieved during the validation stage, future projections showed extensive
urban sprawl that did not comply with intuition or perceived growth trends. To
overcome this problem, the model has been divided into 2 stages. During the first
stage a so-called “urban envelope’ is calculated for prospective years. In the second
stage the model diversifies the urban development into the three urban classes using
the envelope as a growth extent.

The outcomes of this approach show significant improvement over the existing
baseline model; the combination of using a memetic algorithm and the information
provided by dynamic maps further increases the accuracy during UGM validation.
The 2-stage approach on the other hand produces consistent growth scenarios for
future years.
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Introduction

Over the past 30 years, a substantial body of scientific work has been developed in
spatially explicit urban growth modelling. Using historical land use and land cover
data as validation, the current-state-of-the-art in urban growth modelling uses
sophisticated machine learning algorithms to ‘learn’ site-specific urbanization
patterns in order to develop scenarios for future urban development. Although the
accuracy of these models has reached a high standard, actual application of these
models in strategic urban growth policies, urban containment and/or urban zoning
and master plans is still limited. One could argue that urban growth models are
facing a challenge in legitimacy; model outcomes are often treated with suspicion by
city planners and other institutions involved in the urban planning. This is to some
extent due to the inherent uncertainty associated to the development of drivers (e.g.
local GDP growth, population changes) as well as constrains (e.g. top-down
planning policies). Since the majority of urban growth models focus on the
extrapolation of historic urban growth patterns into the future one could argue that
model outcomes can be considered as Business-As-Usual (BAU) scenarios in the
urban development domain.

During the past decades, the impact of natural hazards (e.g. flooding, drought, heat
stress) on metropolitan areas exceeded all expectations. Climate change is likely to
further exacerbate the frequency and intensity of natural hazards and their
consequences. In natural hazards research, BAU scenarios are generally used to
identify a long-term baseline from which the effects of climate change scenarios as
well mitigation and adaptation policies are quantified. Within this domain, there is
an increased awareness that the majority of natural hazard impacts are linked to
urban growth and (the lack of) long term urban planning policies. Urban growth
increases the exposure (e.g. increased concentration of people and assets located in
flood prone areas) and sensitivity (e.g. slumification) of urban areas to natural
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hazard impacts but also acts as a driver (e.g. increased surface runoff and
precipitation).

To assess the impact of urban development, there is an increased demand for urban
growth modelling in both the natural hazard research community and the
environment agencies of local, regional and national governments. Within the fields
of flood management, water resource management, heat impact assessment as well
as urban climate mitigation and adaptation, insights into long term urban
development are vital to develop robust ‘climate-proof” urban policies. Since many
stakeholders within these domains are familiar with uncertainty management, the
intrinsic uncertainties within the domain of urban growth modelling are not
necessarily treated with suspicion. On the contrary, the outcomes of urban growth
modelling are embraced and treated as they should: as potential development
scenarios instead of predictions. In that respect they are used as discussion support
platform to better assess the consequences of long term strategies and ‘what-if’-
scenarios.

In this paper we will present three domains in which future natural hazard impact
assessment and urban growth modelling are combined. The first project covers the
impacts of urban growth on flooding in expanding megacities: Beijing, CN, Dhaka,
BD and Mumbai, IN. For all three cities, constrained urban growth models have
been developed that cover a mid-term horizon (2060). The urban growth models are
connected to hydraulic and flood impact assessment models to identify future flood
prone areas and changes in the subsequent impacts. Depending on the outcomes,
alternative ‘water-sensitive’ long term urban development plans are developed that
safeguard these cities against future flooding. The second project focuses the
interaction between urban growth and changes in local precipitation for large
metropolitan areas. Recent meteorological research shows that local changes in
(monsoon driven) precipitation are strongly related to the intensity and extent of the
urban heat island effect that most metropolitan areas suffer from. The study showed
increasing extreme rainfall events as a consequence of urban growth for the city of
Mumbai, IN, for a horizon of 50 years. Since Mumbai is already suffering from
severe urban flooding, this evidence urges for a controlled urban development
(currently 60% of Mumbai’s population lives in slums) to at least maintain flood
hazards at the current level. The last project evaluates the effects of future urban
growth on the water quality and pollution loads in Lagos, NG. As the fastest
growing megacity in Africa, Lagos is severely suffering from poor sanitary
conditions that cause increasing stress on streams and rivers. Since more than half of
the population lives in slums, the subsequent pollution loads significantly impact the
local water quality and ecosystem. Due to urban growth, this trend will also expand
to streams currently used as grey and black water drains. Since the surface water in
Lagos is used extensively by the local population, the consequences of urban growth
and the lack of good sanitation facilities might lead to immense strain on local
resources and inhabitants and render the problems to an unmanageable scale.
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Abstract

The man-made processes, boosted by the increasingly worldwide need of food,
fiber, water and shelter, rule the changes of use and land cover [1]. The deforestation
causes the loss of biodiversity and causes possible weather impacts [2]. With the
valuation of natural resources, know its allocation in both spatial location and time
and know how they interact in space is fundamental to create aid mechanisms to
decision taking as well as planning future development [3].

The spatial modeling simulation help understand the causing mechanisms and
development processes of environmental systems [4]. The spatial modeling
simulation based on Cellular Automata (CA) have been used for assessing complex
environmental issues, such as estimate pathways and impacts related to the
greenhouse gases emissions [5], [6], integrated modeling of population, employment
and land-use change [7], land-use change [8], predict possible trends in deforested
areas, pastures and forests [9], among others [10].

This study proposes the development, calibration and outcomes analysis of a
dynamic spatial modeling simulation Land Use, Land Use Change (LULUC), taking
into consideration a time period, 1986, 2000 and 2008 (t;, t, and ts, respectively)
where t3 is used to assess quality of the simulated map from t,. Work is focused on
reduction rate of the forest remaining of Atlantic Rainforest of the Brazilian
Municipality of Maragogipe located at 82 miles east of the State Capital Salvador in
the State of Bahia. For so, a modeling platform was used (freeware) based on (CA)
DINAMICA-EGO (http://www.csr.ufmg.br/dinamica).

Medium and high resolution satellite images were researched and purchased
(Landsat-TM and CBERS-2B, sensor CCD; HRC) and other cartographical bases
correlated to the study area. Information was cataloged according to its source,
homogenized, and defining the work unit: degrees, cartographic and geodetic
references, by performing conversions and geo-referencing if applicable. Satellite
images were processed to equalization histogram and radiometric. They were
classified by using the supervised method and the Bhattacharya algorithm. The
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following classes were identified: rainforest, mangrove, grassland, regrow, urban
areas and others. The thematic precision was assessed with the aid of 300 points
acquired in technical visit and by high resolution images analyses, in both cases
defined at random. The descriptive statistics of global accuracy reached the 89%
ratio and the Kappa inter-rater agreement: 0.864 number that represents a high
acceptance level according to scale suggested by Congalton and Green [3]. The
classes were grouped in rainforest and non-rainforest.

Basically, the model was structured in the software, based on a simulation model
suggested by Soares-Filho et al. [12]. An initial map (t,) has its classes changed
according to change rate “Transition Matrix” (TM). TM is the total amount of
change for each land cover transition type of the maps classified, taking into account
the time period of the simulation through a cross-tab operation. Such changes
happen in the most likely areas, defined by the likelihood map, resulting from the
calculus of Weights of Evidence (WofE). WofE are the local odds of a transition
land use classes taking into account a range of spatial variables by stochastic
methods, Bayesian statistical or conditional probability. The spatial variables were:
altitude, slope, soil conditions, conservation areas, distance to major rivers, distance
to small rivers, distance to urban patches, distance to roads, distance to
deforestation, and distance to protected areas. In this study, analyzed transition was
transformation of forest in deforested areas (deforestation). Stains of change
(landscape disturbance) happened in quantity in accordance with TM and had their
rate of appearance or aggregation according to the values arbitrated to certain
software function operators, as well as the isometrics of stains. Applied to changes,
the resulting landscape map was saved at every step of the model and retro-fed as
initial map in the next step until reaching a compatible time variation with t;, by
making possible the validation of outcomes. Validation was performed by
calculating the similarity between the simulated map and the real map (t;) based on
fuzzy logic, applied to a context of pixel vicinity, by means of an exponential decay
function with an 11-pixel-window.

By visual analysis (Figure 1), it was noted that the heuristic process was successfully
designed, as the deforestation standard was respected and are congruent with the
local probabilities according to the likelihood map. The similarity reached by
comparison between the model outcome and the real map (t3) was 46% of minimal
similarity and 77% of maximal similarity.
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Results of the simulation
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Figure 1: Results of the simulation: a) 2008 observed, b) 2008 simulated.

The outcomes reached in this paper show that the spatial model implemented and the
software utilization, which use the methodology based on CA is a good tool for the
analyzes of environmental complex systems and have robust potential to generate
predictive or previous analyses within the ambit of LULUC studies, and the
reliability level may also be assessed.

We thank Instituto Perene (“Perene Institute”) for granting the data used for this
study.
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Abstract

Our reflections and the numerous works concerning the city, its planning and its
transformations, showed all its complexity. The overall process of spatial
development of the city system results from the interaction of social, political and
economic factors, some being activators of its development and others inhibitors. In
front of such a complexity and such a profusion of factors, it is difficult to produce a
rigorous explanatory theory. Hence, in a parsimony perspective, we make the central
hypothesis, that comes true rather widely through the simulations, that the great
majority of the factors which pilot urban development are linked to processes that
have spatial designs which reveal them. More exactly, urban processes (as sub-
urbanization, large housing estates construction, business park development, etc,)
are appearing from specific spatial configurations but are also producing
characteristic spatial patterns.

Rather than producing a fine spatial analysis which tries to isolate the contributory
factors, that is almost impossible because of their intricacy, we adopted a
constructive approach by developing SpaCelle. This cellular automata platform
obliges the modeller to a certain conceptual parsimony. It was developed on urban
growth issues; nevertheless, it remains very general and can be used in other
research fields concerned by spatial dynamics. SpaCelle is based on a classical
cellular automata paradigm which means that each cell is only reactive. Indeed,
contrarily to a more general agent based model, at each iteration a cell cannot do
anything other than change its internal state from its previous state and that of its
neighbours. Therefore, no flow can be modelled. This means that we can’t modelize
interactions since it requires a simultaneous exchange between two or more cells. In
addition, the use of the platform requires no computer skills: a one click installation,
graphical interface, no algorithmic programming. The dynamic model is defined by
a list (unordered) of transition rules close to the natural language which permits to
test explicit hypotheses of evolution of land use. The user must first build an initial
spatial configuration by importing the different layers containing geographical data
(grid for the land use or the topography, vector layer for networks, etc.). Then he has
to build the base of knowledge of the cellular automata which defines the different
states in each cellular layer and the dynamics of the model using two kind of
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transition rules: environmental rules and life rules. These rules reflect the spatial
aspects of processes in action. They are at every moment and in every place in
competition with each other. It can thus handle the complexity of influences and
constraints, often antagonistic that are overlapping in space. An important feature of
this type of modelling comes from the verbal aspect of the formulation of the
dynamic model, which provides by construction, an explanatory aspect by induction.
Indeed most of the urban growth models are based either on deterministic dynamics
that adjusts series of evolution curves or action curves according to the distance (as a
potential), or on stochastic laws as Markov chains, methods that are not directly
explanatory.

The cellular automata SpaCelle helped to enlarge and further improve our reflection
on the city construction. The modelisation was applied to the Rouen area. The
reflection was carried out from two directions.

The first, based on a retro-simulation approach, led to a model that improved the
general understanding of urban dynamics during the second half of the twentieth
century. We identified some ten processes, more or less old, that have animated
urban spaces since the Second World War. It was validated using different methods.
The second, based on a prospective approach, aims at assist management of urban
areas. It compares the simulations of different scenarios proposed by policy makers
and local planners for 2025. Prospective scenarios were realized using the retro-
simulation model, on which alternatives scenarios were constructed. The results of
these scenarios were discussed with city planners who could appreciate visually
some possible effects of the different political orientations.

Finally, the platform SpaCelle is not limited to the urban growth issues; it permits to
simulate a wide variety of situations from the game of life to the spatial spread of
epidemics, through ecological or climatic models.
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Abstract

Literature reviews are key components for understanding the scientific progress of a
research subject. They tend to be organized on a chronological way, but the large
majority of them, if not all, focus on the features and details of the subjects,
regardless of their chronological evolution. These perspectives may lose some
important issues that had contributed for this evolution, in particular those regarding
the technological and socioeconomic contexts, in which the subject was considered
as valid and pertinent both for research and for practical application. This is
increasingly more important when we are dealing with models of any sort. Models
are intended to be controlled, affordable, understandable, and safe test beds for
experimental research about more complex systems. For this reason, there is a very
close connection between the needs and the context of societies and technology and
the research made using models, a discussion somehow present in the famous papers
of Douglass Lee [1, 2] and, more recently, in Helen Couclelis thoughts about the use
of integrated models [3]. This presentation focus on an historical timeline for the
research and application of cellular automata (CA) models in urban studies and
geography, from their formulation by von Neumann and Ulam and the pioneer work
of Tobler, to today’s complex models that integrate a whole set of other modeling
concepts in their formulation. We will relate CA models with the technological
settings and with the planning practices that were the main trends at each moment
during their already long existence, identifying how these tensions influenced the
research on CA.
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Abstract

Over the past decade various authors have discussed to what extent the
neighbourhood rules (also known as interaction rules) of CA-based land use change
models are generic. Where some argue that local differences in behaviour are crucial
for the accurate modelling of land use processes and need to be included in the
neighbourhood rules, others advocate that their nature is more generic.

This research aims to investigate to what extent it is feasible to calibrate a CA-based
land use model for Europe with one set of interaction rules and if a sub-division in
large regions enhances the calibration results. The research is carried out with the
Metronamica model that has been widely applied to cities, regions and countries
worldwide (www.metronamica.nl). Main data sources used are Corine Land Cover
maps, GISCO transport data, zoning information provided by EC DG Environment
and the EC DG JRC and information on the bio-physical characteristics of the
territory provided by EC DG JRC.

The research consisted of the following steps:

1. Analysis of historic land use changes in Europe to understand:
a. how land use patterns have evolved over time.
b. what land uses are over- or under-represented in the neighbourhood of
cells that have changed over time, and why.

2. Calibration of the model to the whole of Europe as well as to the large
regions in Europe, each time using the same underlying data and resolution
(1x1 km?). Calibration results are assessed for both the process and
predictive accuracy and compared against a benchmark.

3. Comparison of the various calibration results to assess if it is possible to
calibrate an application to Europe with one rule set, and if the calibration
results will improve by sub-dividing Europe into large regions with similar
behaviour and region-specific calibration parameters.

Analysis of land use change shows that both similarities and differences in land use
change dynamics can be found across Europe. The continuation of the urbanization
process and the development towards larger urban centres can be detected all over
Europe. The exception to this is Western Europe, where the data shows that the
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distribution of urban clusters remains largely constant over the analysis period. This
may be because this area was already highly urbanized from the initial year of the
analysis, compared to the rest of Europe and hence a development towards larger
clusters is likely to have taken place before the analysis period. All over Europe
urban sprawl can mainly be found in areas formerly occupied by agriculture, causing
agricultural areas close to cities to be taken over by suburbanization. Differences are
found in the way residential development is attracted by water bodies. Inland water
bodies are important attractors for residential development in South-eastern Europe
and Western Europe, while the coast is a main attractor for this development in the
Mediterranean and Western Europe. Part of this behaviour can be explained by the
desire of people to live near water bodies, but historical preference of cities to locate
next to coasts or rivers for their transportation function are likely to contribute to
these developments as well. The latter would indicate that including this behaviour
in interaction rules should be done with caution, as the reason for current
developments might be the proximity to the cities rather than to the water body.
Agriculture is the land use that shows the largest decline in surface area in the
European territory. Strongest decreases are found in Western Europe, followed by
the Mediterranean region. Conversion from agriculture to all other land uses can be
detected throughout Europe, while new agricultural locations can mainly be found
on land previously occupied by forest and natural vegetation. Contrary to what neo-
classical economists expect as a result of transport costs to a central market, the data
does not provide any indication of an attraction of agriculture to urban land uses.
Calibration results show that it is possible to calibrate a CA based land use model for
Europe to the extent that it is able to outperform the chosen benchmark. However
calibration results can be improved if the calibration rules are fine-tuned using the
specific characteristics and behaviour observed in the large regions.

This research shows that neighbourhood rules for Europe are to a large extent
similar, but that including information on regional characteristics regarding the
behaviour enhances the calibration results.
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Abstract

Urban modeling is inherently an interdisciplinary endeavor, with a broad societal
relevance. It is not surprising that it brings together researchers from a wide range of
backgrounds, carrying with them the paradigms, toolsets and terminology of their
disciplines. These backgrounds include economists and econometricians,
geographers, planners and architects, civil engineers, computer scientists and many
more. This paper makes a systematic comparison between three models that are all
concerned with the organization of land use and activities in space and that all see
proximity and accessibility as major determinants of that organization. Despite these
strong conceptual similarities, the models are conceived from fundamentally
different starting points and assumptions, and it is often thought that there are
irreconcilable differences.

The compared models are the MOLAND Cellular Automata model as introduced by
White and Engelen [3]; the dynamic spatial interaction model UrbanSim [2]; and the
MEPLAN regional economic land use and transport model as proposed by
Echenique [1]. These models differ in their basic units: parcels of land in the cellular
automata model and households and organizations in MEPLAN and UrbanSim.
They also differ in their understanding of the predictability and regularity of the
urban growth process: Central to the MOLAND model is the notion of complexity
and self-organization, UrbanSim on the other hand assumes that rates of change
follow continuous functions that may well be estimated using standard econometric
techniques, and MEPLAN is based on a constant equilibrium in the demand and
supply for land.

This paper compares the strengths and weaknesses of these models; it also shows
how the models make concessions to their basic structure in order to overcome
weaknesses. It then emerges that in practice the models are more similar than their
theoretical roots suggest and the remaining differences are to a lesser extent
fundamental conceptual differences, but rather differences in emphasis, terminology
and computational methods.

The comparison of the models’ strengths and weaknesses gives rise to the idea of a
best-of-worlds hybrid solution. The paper concludes by setting out the basic
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components of such a solution and presenting a number of suggestions to make it
work computationally.
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Abstract

Cellular Automata (CA) models are very popular models for simulating spatial
change and they have been developed and applied intensively during the past two
decades. Two main features made CA interesting for urban studies: first, their
inherent spatiality which suits the simulation of a wide range of geographic
phenomena; second, the possibility of simulating complex patterns of, for example,
land use starting from a simple conceptual framework that includes the definition of
a cell space (form), a neighborhood (interaction), and a finite set of transition rules
(behaviors) applied to a finite set of cell states (land uses). This conjugation of form
and function make CA models suitable for capturing the contribution of different
phenomena to the complex processes of urban change. These models are commonly
used to simulate land use change at a regional or metropolitan level considering land
use dynamics at a local level. They consider increasingly smaller cells, making use
of the high resolution of today’s remote sense images to capture many interactions
that occur at a very large scale. Regular cells are used at the local scale (pixels) and
at a regional scale, as aggregations of smaller cells. This regularity does not match
reality at both scales. We address these issues of scale and cell form by proposing a
multiscale CA modeling platform that aims to capture land use dynamics at two
different spatial and time scales: a macroscale CA that tries to simulate the
aggregated land use change at a regional level; and a microscale CA that tries to
simulate land use allocation at local scale. We use irregular cells at both scales —
municipalities or similar units at the macrsocale and census blocks or derivatives at
the microscale — as irregular cells to simulate land use change. The macroscale
model generates aggregate values of land use demand as an input for the microscale
model which will then try to allocate land use to best fit simulation to reality. We
describe the main features of the models and of the calibration process. Finally, we
present some modeling results for the Metropolitan Area of Barcelona.
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