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CAMUSS, a Symposium on Cellular 

Automata in Geography and Urban 

Studies 

Nuno Norte Pinto 
 

Cellular Automata (CA) models have been used in Geography and Urban Studies for 

some decades now, becoming one of the most popular concepts in contemporary 

spatial modeling.  

CA models are today very sophisticated, having evolved significantly both in 

theoretical and in practical terms, with many models already being used to support 

policy design in different geographic contexts. 

CA have gained a sound scientific presence in the Geography and Urban Studies 

literature. A quick and non-exhaustive search on the Web of Knowledge gives us 

more than 1900 papers on “urban” or “spatial” CA published since only 1991.  

However, it seems that the discussion over CA mainly happened in the literature. 

When many colleagues were asked if they could remember of one large, dedicated 

meeting on CA in Geography and Urban Studies, they always gave the same answer: 

they remembered none.  

Despite some short and usually very local workshops about CA, and many parallel 

sessions dedicated to CA, usually in the same Geography and Geocomputation 

conferences, there is no memory of a larger meeting that had focused on the 

complex scientific structure that CA already has. 

Such a meeting is, in my opinion, essential, especially now, when new computation 

capabilities are available, and when it is easier to handle larger and more 

disaggregated datasets, increasing the simulation capacities of other modeling 

concepts such as agent-based simulation. 

 

I wish to welcome you to CAMUSS, the (first) International Symposium on Cellular 

Automata Modeling for Urban and Spatial Systems. 

 

CAMUSS was launched with a simple program: to bring together researchers who 

have been and still are working on CA modeling applied to urban and spatial 

systems. 

CAMUSS aims to create the proper forum for a deep reflection on the scientific 

history of CA in Geography and Urban Studies through the presentation of the state-

of-the-art research on CA, and to devise a new research agenda in this field for the 

next years. 
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In spite of the very high level of specification that CAMUSS was targeting – only 

CA-linked submissions were accepted – it was really satisfying to be able to gather 

such a significant group of contributions from all the corners of the world.  

More than fifty contributions were submitted and more than forty were accepted to 

the program, authored by more than ninety researchers.  

The program has fourteen parallel sessions, each one focusing on a main topic 

related to CA. Parallel sessions were scheduled to provide participants the proper 

time to present their research and to have a fruitful discussion with an audience of 

true experts on CA.  

The program has three keynote lectures by three of the most influential researchers 

and authors on CA:  

 Professor Michael Batty, Director of CASA and Bartlett Professor of Planning, 

University College London, United Kingdom; 

 Professor Helen Couclelis, Professor at the Department of Geography of the 

University of California at Santa Barbara, United States of America; 

 Professor Roger White, Professor at the Department of Geography of the 

Memorial University of Newfoundland, Canada. 

 

This is what I believe to be the proper setting for having a deep discussion about the 

history of CA as a modeling tool in Geography and Urban Studies, and about what 

will be the future research on CA in the mid- and long-term. 

The goal of CAMUSS was already accomplished by the quality of the work 

presented in these Proceedings. 

 

I would like to thank all the members of the Scientific Committee for their precious 

help on evaluating the quality of the submissions. 

I would also like to thank the important financial and logistic support provided by 

our sponsors, namely the European Research Group on Spatial Simulation for Social 

Sciences, S4, the Geography and Spatial Planning Research Centre of the University 

of Luxembourg, the Gulbenkian Foundation, and ESRI, as well as the Centre for 

Land Policy and Valuation of the Technical University of Catalonia, and the Centre 

for Advanced Spatial Analysis at University College London. A word of gratitude is 

also due to the Norte Region Planning and Regional Development Commission, as 

well as to the Tourism Offices of Porto, Vila Nova de Gaia, and Douro for their 

valuable support. 

A final word is due to the members of the Organizing Committee, Joana Dourado 

and Ana Natálio, for their dedication and contribution to the success of the 

Symposium, and to Professor Helena Pina, for her valuable collaboration in 

organizing the scientific component of our social program. 

 

Bem hajam.¤ 

 

                                                                 
¤
 The traditional way to say “thank you all very much” in Portugal. 
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Abstract¤ 

China has come to a new era of rapid urbanization and urban expansion. Since the 

late 1990s, many studies on using cellular automata techniques have been carried out 

to tackle urban and regional development problems. Cellular automata (CA) have 

been used as a useful tool to support land use planning and policy analysis as well as 

to explore scenarios for future development in this fast developing country. There is 

a growing demand for the application of CA in some planning departments in major 

Chinese cities. Especially, many applications are found in the coastal cities, such as 

Guangzhou, Dongguan, Shenzhen, Shanghai and Beijing in China. Significant 

modifications have been made so that CA can be suited to a lot of urban simulation 

and planning tasks in this region. Much effort has been made to generate a high 

degree of reality in urban simulation by using a richer set of GIS data for the 

calibration. Some classical CA models have been established by Chinese scholars 

who have used a variety of intelligent methods, such as MCE, ANN, and GA 

methods, for calibrating these models. 

1. Rapid urbanization and urban expansion in China 

In the 20th century, rapid urbanization has become a typical geographical 

phenomenon because of economic development and population growth around the 

world. For example, the urban population increased from 220 million in 1900 to 732 

million in 1950 (29% of the world’s population), and to 3.3 billion (the first time in 

history over half of the world’s population) in 2007 (Potsiou, 2010). The growth 

trend continues into the 21th century as 60% of the world’s population will be 

urbanized by 2030 according to the report. This rush to the cities has resulted in 

unprecedented urban expansion and land use changes in many fast growing regions, 

associating with severe ecological, economic and social problems. 

China’s urbanization before 1980s was slow and even stagnated during the 

Cultural Revolution (1966-1976) (He and Wu 2005). The economic reforms under 

Deng Xiaoping’s leadership broke many bottlenecks and strongly stimulate the 

                                                                 
¤
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urban development. The policy of economic decentralization resulted in the 

diversification of investment sources (e.g. foreign direct investments); while the land 

leasing system became an effective way to bring local revenue and also the tactic to 

attract investors to promote local economy (Wu 1998). In addition, the reforms in 

household registration (hukou) system smoothed the urban-rural migration that 

increased urban population and speeded up the urbanization process (Chan and 

Zhang 1999). In post-reform China, rapid urban expansion was witnessed in the 

coastal areas. It is reported that urban land increased 40-60% during 1990-1995 in 

Pearl River Delta (60.11%), Yangtze River Delta (54.29%) and Beijing-Tianjin-

Tangshan zone (42.18%) (Tian et al. 2005). However, the fast urbanization paces 

caused the serious problem of farmland loss in eastern China (Seto et al. 2000). 

While in the hinterland, the quantity of arable land increased because of the change 

of production conditions, economic benefits and climatic conditions (Liu et al. 

2003). 

2. Cellular automata for urban simulation and planning in China 

A better understanding of these changes is important for tackling various urban 

planning and environmental management issues in this fast growing country. There 

is a demand to develop a kind of simulation models which can assist the complex 

decision-making processes associated with the economic and development 

transition. The fast emergence of geographical cellular automata (CA) in China has 

been witnessed since the late 1990s. A number of CA models have been proposed to 

solve the complex urban and regional development problems in this region. For 

example, Wu (1998) developed a CA model, SimLand, to simulate rural-urban land 

conversion by incorporating the multi-criteria evaluation (MCE) method. The 

logistic regression method was proposed to calibrate CA models by using training 

data (Wu 2002, Li et al. 2008). Li and Yeh (2002) proposed a neural network-based 

CA (ANN-CA) model to reduce the influence of spatial autocorrelation in urban and 

land use simulation. An advantage of this model is that spatial variables are not 

necessarily required to be independent of each other. Attempts have also been made 

by using genetic algorithms to calibrate CA models (Li et al. 2008). Recently, A 

Geographical Simulation and Optimization System (GeoSOS) is proposed by Li et 

al. (2011). GeoSOS is a computer-based system to simulate, predict, optimize, and 

display geographical patterns and processes (downloaded at 

http://www.geosimulation.cn/). As a bottom-up approach, GeoSOS consists of three 

major integrated components, CA, ABMs, and SIMs. This system is equipped with 

some common CA algorithms, such as MCE-CA, logistic-CA, PCA-CA, ANN-CA, 

and Decision-tree-CA. It also provides spatial optimization algorithms (e.g. 

facility-siting, path-finding, and area optimization) by modifying ant algorithms. 

To present a review on applications of urban CA models in China, we used 

Google Scholar to search international articles with the keyword combinations of 

“cellular automata + land use change + China” and “cellular automata + urban + 

China”. Thereafter the articles were manually filtered to match the topic. Finally, 44 

articles were selected for this review. We have not included Chinese papers or books 

in the analysis. For example, Zhou et al. (1998) published a Chinese book titled 

http://www.geosimulation.cn/)
http://www.geosimulation.cn/)
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“Geographical cellular automata” which should have some influences on the study 

of cellular automata in China. 

Table 1 lists these applications with the information of the model and the 

validation method. Most of the CA applications are within those coastal cities in 

eastern China. This is not surprised because this part of China is experiencing 

the fast industrialization and urbanization processes (Seto and Fragkias 2005, Luo 

and Wei 2009, Deng et al. 2010). However, the rapid urban development also gives 

rise to a lot of ecological and environmental issues (Li et al. 2007, Deng et al. 

2009, Fang et al. 2009). Therefore, these cities in eastern China can be the perfect 

experiment fields for the implementation of various CA models for the assessment 

of urban development policies. From the perspective of regional studies using CA 

models, there are two notable application areas: Pearl River Delta (PRD) and 

Northern China. The PRD is one of the economically dynamic regions and the 

world’s famous manufacturing base. This region also suffers serious environmental 

problems caused by fast urbanization, including the loss of farmland (Seto et 

al. 2002, Li and Yeh 2004a), the degradation of mangrove forest (Liu et al. 2008a), 

air pollution (Guo et al. 2006), etc. Researchers, such as Wu (1996) and Li and 

Yeh (2000), brought in the CA models to address the issues of sustainable urban 

development in PRD during late 1990s. These were also the first CA applications in 

China. The region of Northern China spans from moist zone, semi-moist, semiarid 

zone and arid zone with obvious climate transition and regional differences (He et 

al. 2005). This region contains the agriculture-pasture transition zone, and the 

environment and eco-system here are relatively vulnerable. Studies conducted by He 

et al (2005), Li and He (2008), and Chen et al (2008) mainly focus on the 

assessing the potential impacts of land use/cover change on the local eco-systems. 

It can be seen from Table 1 that those widespread models in China are the family of 

CA models based on multi-criteria evaluation (MCE-CA) (Wu and Webster 1998) or 

artificial neural network (ANN-CA) (Li and Yeh 2002), and the SLEUTH model 

(Clarke et al. 1997). This is related to the pros and cons when applying these models 

to the specific simulation problem. The family of the MCE-CA models calculates 

the development probability of a cell from the weighted sum or product of a group 

of factors (Santé et al. 2010). Thus the main issue when using MCE-CA for urban 

simulation is how to soundly define the weights of the factors. Usually this requires 

the sophisticated domain knowledge or expertise in the field of urban studies. 

Lately, researchers developed several approaches to automatically calibrate the 

model, such as logistic regression (Wu 2002) and Monte-Carlo approach (Chen et al. 

2002). More recently, techniques from artificial intelligence are introduced for the 

calibration of CA models, including genetic algorithms (Li et al. 2008), support 

vector machines (Yang et al. 2008), swarm intelligence (Liu et al. 2008c, Feng et al. 

2011), artificial immune systems (Liu et al. 2010), etc. For a long time, urban 

simulation using these models has been simplified into the simulation of, for a 

particular land use type (e.g., built-up area), “changed or not” (developed or 

undeveloped). This is caused by the difficulty in handling the complex 

interactions among various land use types. Such problem can be solved by using the 

ANN-CA. The non-linearity of ANN makes it possible in dealing with the complex 

relationships of land use conversion. Thus the ANN-CA can fit well the objective of 
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simulating the change of multiple land use types in a large area, such as northern 

China (Li and He 2008). 

Table 1 Selected studies on using CA for urban simulation in China 
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Table 1 (cont) Selected studies on using CA for urban simulation in China 
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Table 1 (cont) Selected studies on using CA for urban simulation in China 

 

The weakness of this model is its lack of the explanatory power about the 

geographical process. This is due to the black-box essence of ANN. Compared with 

the ANN-CA, the SLEUTH model differentiates the growth types into spontaneous 

growth, new spreading center growth, edge growth and road-influenced growth. 

Thus the SLEUTH model can help users better understand the urbanization process 

of the study area. However, because the calibration method is a brute-force method, 

the time-consuming calibration procedure becomes the major drawback of 

SLEUTH. Therefore, it can be extremely difficult to apply the SLEUTH in large 

area with fine resolution data. 

In most of the studies shown in Table 1, CA models were used to simulate real 

urban forms based on the replication of the historical growth process. The success in 

replicating historical urban growth indicates that the model is able to capture the 

regularity of the evolution of urban forms. Thereafter the model is used to predict 

the potential future form by means of scenario simulations. These applications have 

demonstrated the power of CA models for produce realistic urban forms as a means 

to find solutions for practical problems. For example, He et al (2006) incorporated 

system dynamics (SD) with CA to simulate the urban expansion of Beijing during 

1994-2001, and predict the development patterns under different policies with 

respect to the limitation of water resources and environmental deterioration. In 

addition to the simulation of real urban forms, CA models were also popular in 

studies on exploring explore and validate hypothetical ideas related to urban 

dynamics (Santé et al. 2010). The very first example is Wu (1996), in which the 

author integrated fuzzy set theory and CA to model sustainable urban development. 

Li and Yeh (2000) used the constrained CA model to assess the benefits of compact 

development in fast growing city. Recent studies also reveal the utilization of 

artificial intelligence to produce the hypothetical urban forms, such as genetic 

algorithms (Li et al. 2008) and artificial immune systems (Liu et al. 2010). 
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3. Conclusion 

China has come to a new era of rapid urbanization and urban expansion. Since the 

late 1990s, many studies on using cellular automata techniques have been carried 

out to tackle urban and regional development problems. Cellular automata (CA) 

have been used as a useful tool to support land use planning and policy analysis as 

well as to explore scenarios for future development in this fast developing country. 

There is a growing demand for the application of CA in some planning departments 

in major Chinese cities. Especially, many applications are found in the coastal cities, 

such as Guangzhou, Dongguan, Shenzhen, Shanghai and Beijing in China. 

Significant modifications have been made so that CA can be suited to a lot of urban 

simulation and planning tasks in this region. Much effort has been made to 

generate a high degree of reality in urban simulation by using a richer set of GIS 

data for the calibration. Some classical CA models have been established by Chinese 

scholars who have used a variety of intelligent methods, such as MCE, ANN, 

and GA methods, for calibrating these models (Wu 1998, 2002, Li 2000, 2002, 

2011). 
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Abstract 

Cellular automata (CA) have been widely used to simulate and analyze urban 

growth processes due to their simplicity and capability of representing emergent 

complex dynamics. Nevertheless, CA have not been used too much outside the 

research realm, due to the lack of flexibility of implemented models or the 

difficulties for their calibration and validation. 

In the present article, the model of White and Engelen is used as a basis, because it 

is one of the most flexible and widely used in the bibliography, so as to produce a 

model inspired in it which will offer fewer difficulties by the time of calibrating it. 

This will be achieved reducing the coefficients to be calibrated so as to be able to 

automate this task using a genetic algorithm (GA). The obtained model will be 

tested, simulating urban growth in the municipality of Ribadeo (NW Spain) and 

analyzing the results. 

Introduction 

Cellular Automata (CA) stand out among the most used urban models, due to their 

capability of reproducing complex dynamics, similar to those found in real cities, 

from simple rules. There are several examples of the application of urban CA to the 

simulation of the expansion of big cities [1, 2, 3, 4, 5]. 

In most of the cases, models were not used outside the scientific community due to, 

among other factors, the lack of flexibility to accurately simulate different urban 

dynamics and the lack of validation and calibration methods to make them more 

user-friendly and ensure accurate simulations [6].  

In recent years new calibration techniques are being applied. Mainly heuristic 

optimization techniques such as simulated annealing and genetic algorithms (GA), 

which constitute two of the most robust heuristic techniques. GA have been widely 

used for CA calibration [7, 8, 9, 10, 11,12]. 

In this paper, a simplification of the calibration process of an urban CA is proposed, 

using logistic regressions and a GA to improve its flexibility. Most of the existing 

models were applied in large cities where urban growth is fast and abundant, thus 
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there is a lot of information that can be used to identify urban dynamics. However, 

in urban areas with slow and scarce growth, these dynamics are more difficult to 

identify [13]. This is the case of Ribadeo, a small municipality in NW Spain [14]. 

Testing the model in such an area with so different characteristics, will allow to 

better assess its flexibility. The paper starts describing the structure of the model, 

which is based on the model of White et al. [1]. Then, the calibration process is 

explained, where two novelties are introduced; the reduction of the number of 

calibration parameters by using logistic regressions, a representation of the distance 

decay influence of neighbouring land uses in the central cell using two linear 

functions and a GA for the calibration of the remaining parameters. Finally, the 

results of the simulation of urban growth in Ribadeo are analyzed and a series of 

conclusions are drawn.  

1. Urban CA model 

One of the first widespread empirical applications of urban CA models was 

developed by White el at. [1]. This model keeps the essence of formal CA rules and 

hence their simplicity. Furthermore, it simulates several land use dynamics and uses 

an extended circular neighborhood that accounts for the distance decay influence of 

several land uses on the central cell state. These characteristics allow a great 

flexibility by the time of simulating different types of dynamics [6].  

This model considers two types of land uses: fixed, which influence the dynamics of 

other land uses but do not participate in simulated dynamics, and active, which both 

influence the dynamics of other uses and participate in the simulated dynamics and 

thus are affected by growth rates. The transition rule of the model is based on 

equation 1, which provides the transition potential of each cell from land use h to 

each active land use j (Phj): 

  jjjhj HNvsP  1
       (1) 

where sj is the cell suitability for land use j, Nj is the neighborhood effect and Hj is 

an inertia parameter that models the resistance of land use h to change to land use j. 

 is a stochastic variable which introduces randomness in the model and is 

determined by equation 2: 

 )ln(1 randv 
         (2) 

where rand is a random number between 0 and 1 and α is a coefficient that controls 

the degree of randomness introduced in the model. The effect of the neighborhood 

(Nj) is calculated with equation 3: 


d i

idkjdj ImN

       (3) 
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where Iid is 1 if cell i at distance d is occupied by land-use k and is 0 if it is not. In 

White et al. [1] a circular neighborhood with a radius of 6 cells is used, where the 

influence of each cell is modeled by means of a coefficient mkd, which value 

depends on land-use k in cell i and on the distance d of cell i to the central cell. Cells 

transition in each interaction of the model to the land use for which they show a 

higher transition potential until the growth rate for that land use is reached. In the 

model proposed in this paper, the random variable is scaled using an exponential 

curve (equation 4) which allows controlling better the degree of randomness 

introduced in the model [15]. The random parameter in the equation is generated 

using the algorithm of VB. 

))1((exp randv  
        (4) 

Besides, in order to model the relative importance of suitability sj with respect to 

neighborhood, this value is scaled with the coefficient β. This way the suitability 

factor is scaled in a similar way to that of the stochastic variable with the α 

coefficient of equation 2.  

Finally, a series of restrictions (Rj) are considered that take the value 0 or 1 

depending on whether the cell can be developed or not because of some kind of 

constraint. Once the aforementioned modifications are made, equation 1 remains as 

follows (equation 5): 

  jjjjjhj HNsvRP  1***


        (5) 

2. Model calibration 

The calibration of the proposed model is complex because of the high number of 

calibration parameters. The model of White is usually calibrated by trial and error or 

by expert knowledge [1, 3, 4, 16, 17]. Trial and error is very time-consuming [18] 

and both methods do not assure accurate results since they may introduce a lot of 

subjectivity [19]. These shortcomings are overcome by reducing the number of 

calibration parameters so as to be able to automate the calibration process using a 

GA. 

2.1 Parameter calculation using statistical methods. 

The suitability factor (sj) was calculated by using a logistic regression, therefore it 

will be avoided to calibrate as many parameters as the number of variables 

considered to calculate the suitability. This method has already been used to 

calibrate an urban CA model in [20].  

Another way of reducing the number of parameters is simplifying the calculation of 

the neighborhood effect. This can be done by using a function of the distance to 

calculate the influence of the neighbouring land uses on the transition potential of 

the central cell. This function could have several shapes [21], which can be 

simplified by using two linear functions (Figure 1):  

f(x) = a + bx         (6) 
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f(x) = c + dx         (7) 

where x is the distance to the central cell and a, b, c and d are the coefficients of the 

linear function. 

Therefore, it is not necessary to calibrate one mkjd coefficient for each land use k and 

equidistant cell to the central cell (for a circular neighborhood with a radius of 3 

cells 7 coefficients mkjd would have to be calibrated for each couple of land uses, as 

shown in figure 2), since the four parameters that define the two lines (a, b, c and d) 

are enough to model the distance decay effect.  

 

 

Figure 1: Examples of simplification of distance decay functions by using two linear functions. 
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   Figure 2: Cells numbered considering their equidistance to the central cell in a 3 cell radius 

neighborhood.  

2.2. Genetic Algorithm 

In spite of having considerably reduced the number of calibration parameters (from 

213 to 138), they are still quite a few; therefore the calibration process remains 

difficult. This is the reason why a GA [22] is used to accomplish this task. 
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This calibration method is inspired on the genetic evolution of populations and is 

composed of the following phases: (i) initialization, where an initial population of 

possible solutions is randomly generated, (ii) evaluation, where the goodness of the 

solution provided by each individual is calculated using a fitness function, (iii) 

selection, where the best individuals are selected according to their fitness, (iv) 

cross-breeding, where selected individuals are cross breeded to create the following 

population of solutions, and (v) mutation, where random variations are introduced in 

the values of the obtained population of solutions.  

In our case, a first population of 700 possible solutions was randomly generated, so 

as to have a number of individuals higher than the number of allele and not too high 

so as to make the algorithm too computationally intensive.This way it is ensured that 

the initial populatin is diverse enough and the computation time is not too long.The 

simulations corresponding to those 700 possible solutions were evaluated to select 

the parents using the tournament method. In the tournament process all individuals 

where randomly chosen two by two and compared. The best ones in each 

comparison were selected to cross-breed. Every couple of chosen individuals 

generated two sons. In the cross-breeding process two recombination points were 

randomly set, where the information of each parent was interchanged to generate 

each son. The best individual in each population is selected to survive in the 

following generation. A mutation rate of 0.008% is applied to all individuals of the 

population of descendant, except for the surviving one. The mutation rate was 

determined by trial and error considering that it would produce variability enough so 

that the algorithm would not get stuck in a local optimum. This was checked 

comparing the mean and maximum values of the fitness function for each 

generation, if the maximum value did not vary the mean should compensate this 

stability producing strong variations of its value in each iteration. 

By the time of selecting a fitness function, it was considered that indexes that 

evaluate cell by cell coincidence do not account for the coincidence of the patterns. 

That is why the index proposed in [23] in combination with three spatial metrics 

[24] - the number of patches (NP), the area weighted mean patch area (AREA_AM) 

and the edge density (ED) – were used. The index proposed in [23] not only 

accounts for cell by cell coincidence but also measures whether cells were located 

close to their real position or not, giving thus a better assessment of the accuracy of 

the model than the kappa index.  

The index described in [23] is calculated running all over the real R and simulated 

maps S windows with several resolutions g (1 cell side, 2, 3, 4, …, n cells side). In 

each window, the number of cells n occupied by each land-use j in the real Rn,j and 

simulated maps Sn,j is calculated. The lowest value for each map and land use is 

chosen and all the values for all land-uses are added. Then each window is weighted 

by the number of cells that the window covers, Wn, all the values from all windows 

in which the maps are divided at each resolution are added g(Ng) and the resulting 

value is divided by the number of cells of the map.  

Equation 8 is used to calculate indexes for each window resolution Pg. Equation 9 is 

used to calculate a global index for all the window resolutions. In equation 9, b 

scales the relative importance of each resolution in the final index, in our case b was 
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given a value of 1.2. P will have the value 1 if there is a perfect match and 0 if the 

cells do not match at all. 
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Only active land uses were considered in the fitness function. The values of the 

spatial metrics for the simulated map where subtracted to the values for the real map. 

The absolute values of these subtractions and the value of P (eq. 9) were used in the 

fitness function. So that these values varied within the same range, the maximum 

and minimum values for each index in each interaction of the AG were taken and 

used to normalize the indexes (eq. 10). Finally, the normalized values where used in 

equation 11 to calculate the fitness function (F). F was used to evaluate the 

individuals of each generation, thus the higher the value, the better the individual 

will be.  
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3. Case study 

The study area is located in the municipality of Ribadeo (NW Spain) (map 1). 

Ribadeo is located at a crossroad of important routes connecting the regions of 

Asturias and Galicia and concentrates the commercial activities and services of the 

surrounding areas. Ribadeo has 6000 inhabitants and experienced a growth of 1000 

inhabitants in the last 10 years. The study area is formed by the main urban core of 

Ribadeo and its 4 surrounding parishes (sub-municipal administrative division in the 

region of Galicia), towards which the urban core is expanding. 
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Map 1: Location of the study area and land use map of 2007. 

The data for the model calibration were obtained by fotointerpetation of aerial 

images of 1978, 1995 and 2007. A cadastral map of 1995 and a digital terrain model 

obtained from the Spanish national topographic map were also used. All this 

information was converted to raster format of 35 x 35 m resolution, and processed to 

obtain the maps of the input variables. 

Land uses where classified as in the model of White et al. [1]:  

 Fixed land uses; water surfaces, roads, institutional, parks, rail tracks.  

 Active land uses; commercial, industrial and residential.  

Agriculture and forest land uses where considered as fixed land uses, yet they could 

be transformed to urban land-uses.  

First, the suitability maps (sj) were calculated using the logistic regression technique 

described in section 2.1 (Map 2). 
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Map 2: Suitability maps for the active land uses. 

The model was calibrated using the land use maps of 1978 and 1995. The AG was 

run until the best fitness value did not increase during several interactions (this 

happened from interaction 52 on, when the fitness function increased from an initial 

value of 3.95x10-8 to a value of 4.47x10-7). The coefficients obtained in the 

calibration (table 2) where used to simulate urban growth between 1995 and 2007. 

Results were validated comparing them with the land use map of the year 2007. The 

amount of growth of each active land use in each interaction was determined 

dividing the real growth in the period to be simulated by the number of interactions 

of the simulation. 
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Table 2 Coefficients obtained in the calibration with the GA 

 Industrial land-use Potential 

 Land-uses Neighborhood a b c d 

Agriculture -15.73 -1.94 74.42 -11.94 

Water 18.35 1.42 -82.68 7.03 

Commercial 15.27 0.06 2.76 -0.50 

Roads -43.73 -1.07 96.80 0.97 

Forest -19.81 2.11 55.90 0.78 

Industrial -69.44 -0.15 1.19 -0.47 

Institutional 89.94 -0.14 15.98 0.00 

Parks 34.18 0.34 -14.99 -0.51 

Residential -98.98 0.74 -85.63 -2.51 

    4.53 

    5.50 

 

 H 33837.97 

 Commercial land-use potential 

 Land-uses Neighborhood a b c d 

Agriculture -1.05 0.61 33.10 -5.96 

Water -25.26 -0.57 -71.82 2.14 

Commercial -69.79 -2.34 -18.75 0.07 

Roads 41.08 -1.60 78.94 0.02 

Forest 6.00 2.06 -99.54 -1.02 

Industrial 82.46 0.64 -11.04 0.11 

Institutional -80.02 0.00 41.64 -125.34 

Parks -30.96 1.96 -30.85 17.19 

Residential 12.17 -0.49 90.18 -0.65 

  а  2.78 

   1.82 

 

H 265816.4 
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Table 2 (cont) Coefficients obtained in the calibration with the GA 

Residential land-use potential 

 Land-uses Neighborhood a b c d 

Agriculture -4.58 -1.64 63.85 0.95 

Water 89.51 2.64 32.25 -2.68 

Commercial -39.35 -0.93 -0.55 0.86 

Roads 48.06 0.21 -12.97 13.97 

Forest -49.20 1.80 -6.74 0.20 

Industrial 35.41 1.98 -97.94 0.11 

Institutional 92.93 -0.53 89.63 -1.23 

Parks 86.09 -0.41 61.85 -5.28 

Residential -67.89 -1.57 69.27 -4.70 

  а  5.93 

   3.44 

 

H 113284.80 

 

The results of the proposed model were compared with the results obtained using the 

original model of White. The neighborhood parameters used in the model of White 

where the same than those used in the application of this model to Cincinnati [1], 

since according to the authors, these parameters should not vary too much between 

different cities. The stochastic variable and the accessibility were calibrated by trial 

and error and the suitability was calibrated using a logistic regression and the same 

variables as in the proposed model.  

The index proposed in [23] (table 4) show that cells simulated with the proposed 

model were located closer to the real ones than those simulated with the model of 

White.  

Considering the figure of merit (table 4), the results are even better for the proposed 

model. The figure of merit is calculated subtracting the partial hits (urban land uses 

simulated as different urban land uses) to the hits and dividing the result between the 

addition of the misses (urban land uses which are simulated as non urban land uses), 

false alarms (non urban land uses which are simulated as urban land uses ), hits and 

partial hits. 

The values of the spatial metrics show that the residential land use simulated with 

the proposed model presents patterns closer to reality (table 3). Commercial and 

industrial land use patterns were not correctly simulated because the amount of 

growth in the study period for these uses was low and there was not enough 

information to calibrate them correctly. The values for the AREA_AM are better in 

the patterns simulated with the model of White since - as it can be seen in map 2 - 

this model simulated growth concentrated along the main roads whereas the 
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proposed model simulated more disperse patters which are in general lines closer to 

the real ones. 

 

Map 3: a) Map simulated with the proposed model for the year 2007 b) map simulated with the 
model of white for the year 2007. 

Table 3: Results of the evaluation metrics for the proposed and the White models 

 

Table 4 Figure of merit of the results of the proposed model and the model of white. 

 

Proposed model NP AREA_AM ED 

Pontius index 0.9201 Residential 224 37.29 18.43 

  Industrial 43 1.84 2.79 

  Commercial 23 0.55 1.13 

White et al (1997)  NP AREA_AM ED 

Pontius index 0.9195 Residential 234 19.52 20.46 

  Industrial 46 3.24 2.4 

  Commercial 29 1.35 1.06 

Real data NP AREA_AM ED 

  Residential 224 18.73 18.25 

  Industrial 45 2.07 2.66 

  Commercial 13 1.76 0.84 

 

 Figure of merit  Hits  Partial hits  Misses  False alarms  

Proposed model 7.09% 69 5 447 382 

White et al (1997)  3.3% 68 36 417 436 
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Conclusions 

The model proposed by White et al. [1] has many advantages for the simulation of 

small urban areas but its main drawback is the high number of calibration 

parameters. The modifications proposed in this paper allowed to automate the 

calibration process, making it simpler without losing the flexibility of the model of 

White. This was achieved using logistic regressions to calculate the suitability and 

simplifying the neighborhood coefficients by representing the distance decay effects 

with two linear functions. The method used to scale the randomness degree was also 

improved using an exponential function.  

The obtained results show that GA are a good tool to calibrate CA models, since 

better results are yielded than using expert knowledge or trial and error methods. 

Most of the errors produced in the simulation of the study area are due to the 

scarcity of data to calibrate the model, caused by the characteristics of the study area 

which presents a low and slow growth. The mismatches between the real and 

simulated data are also due to the deficiencies of the validation method, since, even 

using several indexes that considered both the cell to cell match and the spatial 

pattern of land uses the complexity of growth patterns could not be accurately 

captured. Future research should focus on finding validation methods which can 

better evaluate the complex aspects of urban dynamics. 
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Abstract 

The process for extending an existing model of residential migration of households 

within an urban environment is presented. The model employs a hybrid framework 

consisting of cellular automata to represent the urban landscape, and agent automata 

to represent the households. The challenges of working with realistic temporal and 

spatial features are addressed. 

Introduction 

For decades researchers have tried to determine the process through which a 

household decides where to live [3][7]. Residential movement is the movement of 

populations on a household scale. It impacts the composition of cities and the 

character of neighborhoods. Recent advances in computing technology have allowed 

researchers to start investigating social phenomena using software models which can 

capture the complexity of social dynamics. Furthermore, researchers have extended 

these modeling techniques which utilize simulation technology to explore the 

processes of residential migration [6]. 

The Modelling of Complex Social Systems (MoCCSy) Urban Migration project is a 

recent attempt to capture the residential movement problem in a computable form 

[4]. This is an interdisciplinary project drawing on the expertise of researchers in 

Computing Science, Criminology, Environmental Science, Geography and 

Mathematics. This group worked in an iterative, three stage process with the 

eventual goal of developing a model that correctly represents expert domain 

knowledge, is mathematically sound, and can be examined through computational 

means. These criteria correspond to the three stages of the process, illustrated in 

Figure 1. This process is described in full in [2]. 

Previous stages of the project focused on the general phenomena of residential 

movement and neighborhood formation [4]. As such, the environment included in 

the model was abstract in nature. Here, we present our findings with regard to 

extending that model to include geographical features based on real data. This paper 
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begins by outlining the background of the subject matter and modeling process, 

which is followed by a summary of the model design. The methods used to extend 

the model by integrating real geographical data to generate the simulation 

environment are described, and results from test runs on the simulation model are 

presented. Finally, we discuss issues and challenges encountered during this process 

and mention techniques used to deal with them.  

Background 

Computational modeling is an approach to research that utilizes software 

representations of phenomena in order to analyse them in a novel manner. A model 

is a parsimonious version of something in the real world, ostensibly facilitating 

understanding by only including salient aspects of the subject matter. Models can 

help to reduce uncertainty about the future, test “what if” scenarios, and have the 

potential to reveal underlying structural characteristics and relationships. Models 

also are a formal explanation of understanding, and serve to communicate ideas and 

share in knowledge discovery [5]. 

 

Figure 1: The iterative process for modeling complex phenomena. Adapted from [2]. 

The decision by a household to stay in their current location or move to a new one is 

a complex process [12]. In reality, a household will consider myriad social and 

material factors, weighing the benefits and disadvantages of each option. Access to 

employment, commuting time, family size, income and personal relationships can all 

affect the decision to migrate. Sources of stress in the current location may also 

motivate a change of location [3]. This complexity makes modeling of residential 

migration difficult to do with traditional linear models, whereas computational 

modeling can address these issues [11]. Cellular automata (CA) have been used by 

researchers in similar work because of their capacity for simulating local interactions 

[9][10]. Likewise, agent automata have been shown to be useful for representing the 

actions of agents in an urban environment [1]. Hybrid models that use both types of 

automata have also been developed [8]. 
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Torrens (2007) developed a simulation model of residential mobility which 

integrates numerous factors involved in this process [6]. Properties are differentiated 

by tenure (rental versus purchase), size, and monthly cost, among other things. 

Households have characteristics such as income, age, size and ethnicity. Local 

housing markets and communities are also considered. A unique aspect of this 

model is that it represents these entities as geographic automata – a paradigm that 

includes the capabilities of both cellular and agent automata. One of the limitations 

of this project is that the representation of space is abstract. 

Existing Simulation Model 

The research presented here extends the urban migration model developed through 

the MoCCSy research group, which is described in full in [4] (including justification 

of design choices and theoretical background). In the model, the environment is 

represented by cellular automata. The individual cells represent residential locations, 

and can contain one or more households. The households are represented by simple 

agent automata. The most important characteristic of a household is its social 

structure value. This value is used to capture all features that correspond to social 

coherence. Thus, a variety of contributing factors, such as household income, 

education, ethnicity, and so on, are compressed into a single representative variable. 

This approach avoids the difficulty of operationalizing the individual factors and to 

instead focus upon their cumulative effect on residence choice.  

A positive social structure value indicates adherence to social norms and lawful 

behavior, while negative values indicate an emphasis on personal freedom and lack 

of community duty. Extreme negative values can also indicate criminal inclinations. 

Our fundamental assumption is that households are attracted to neighborhoods with 

a social structure value similar to their own when selecting a new residence. The 

social structure of a cell is either the average social structure of all of its residents, in 

the case of a high density cell (such as an apartment building), or the average of all 

the cells in a 1-radius Moore neighborhood, in the case of a low density cell (such as 

a single family home). 

The decision of a household to look for a new home is probabilistic, with the actual 

chance of this being dependent on the difference in value between its social structure 

and that of the cell it inhabits. If a household does not move, it is subject to social 

influence from its neighbors, its social structure slowly becoming more similar. 

Finally, all households are subject to regular random perturbations of varying 

intensity – this represents the individual factors in life that alter social structure, such 

as employment, illness and family relations. Thus we consider this model to be a 

hybrid CA-agent model, since local change (at the neighborhood level) is 

propagated using cellular automata structures, while household units are represented 

by agents with the ability to move. 

Social attractors are another entity that may be present in a run of the simulation 

model, depending on the scenario chosen. These are institutions that attract 

households of similar value. A positive attractor, such as a church or school, attracts 

households of positive social structure, while a negative attractor, such as a drinking 

establishment, attracts households of negative social structure. 
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Figure 2: Outline of household behavior. The part related to residence change is highlighted. 

Data 

The goal in this stage of the project is to implement a geographic environment that 

matches the general residential features of a real environment. Vancouver is selected 

due to its diverse neighborhoods and the availability of data from the City of 

Vancouver’s Open Data Catalogue. A land use map was generated using the City of 

Vancouver’s district zoning data (Map 1). Since the 75 different zoning 

classifications are too cumbersome to work with, these are aggregated into 9 general 

classes of zoning types. While the zoning data gives a general idea of where people 

in the city live, it is not sufficient for generating an environment for the simulation. 

Some parks are classified as residential area (including the spacious Stanley Park 

located downtown), despite having no residences. Further, the Comprehensive 

Development classification is used as a catch-all to mark areas that need special 

regulation. Both the mixed commercial and condominium high-rises of Yaletown 

and the luxurious homes of Shaughnessy fit into this classification, despite having 
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radically different residential densities. Due to these problems, a map of dwelling 

density is clearly necessary. 

The residential density map (Map 2) is prepared by using the Dwellings Occupied by 

Usual Residents data at the dissemination block level from the 2006 Census of 

Canada. Dissemination blocks vary in size, so some larger blocks have a high 

number of dwellings while being quite sparse. To adjust for this, the area of each 

block is calculated using the ArcGIS Spatial Analyst extension. The total dwelling 

count for each block is then divided by its size to generate a final density value of 

dwellings per hectare. The resulting map shows Vancouver’s concentration of 

residential density in the downtown core and relative sparseness throughout much of 

the west side. 

 

Map 1: Vancouver zoning districts, 2009. Source: City of Vancouver, Open Data Catalogue. 

The residential density map (Map 2) is prepared by using the Dwellings Occupied by 

Usual Residents data at the dissemination block level from the 2006 Census of 

Canada. Dissemination blocks vary in size, so some larger blocks have a high 

number of dwellings while being quite sparse. To adjust for this, the area of each 

block is calculated using the ArcGIS Spatial Analyst extension. The total dwelling 

count for each block is then divided by its size to generate a final density value of 

dwellings per hectare. The resulting map shows Vancouver’s concentration of 

residential density in the downtown core and relative sparseness throughout much of 

the west side. 

Each of these maps is rasterized and then saved as a text file. The program can then 

import the values from a matching set of zoning and density text files to construct an 

urban environment with cell values that match the raster grid. Files with cell sizes of 
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25, 50 and 100 square meters are prepared in order to test the model at different 

levels of spatial resolution. 

Extensions to Simulation Model 

The addition of an environment modeled after the real world required changes in 

other parts of the simulation model. Many of these changes are purely graphical, 

such as adding functionality to display the zoning district types on the map. Another 

change is to show dwelling density values using a logarithmic scale, in a similar way 

to how density levels are classified in Map 2. Other changes are of a structural 

nature.  

 

Map 2: Dwellings occupied by usual residents, Vancouver, 2006. Source: Census of Canada. 

In particular, the effect of the land use types on household behavior needs to be 

determined. Since the zoning districts show the land use of a cell, they can be used 

to determine how much the effect the actions and behavior of the residents have on 

the social structure of the neighborhood. An example of this is in a primarily 

commercial area where there are many residences above places of business, but the 

character of the neighborhood is determined more by the businesses than by the 

residents. The mirror situation is a neighborhood composed primarily of resident 

homeowners: the behavior of the residents is the main source of neighborhood social 

structure. In the original model, low density cells used a radius one Moore 

neighborhood to calculate social structure, while high density cells did not consider 

any neighboring cells for this calculation. These ideas were composed to come up 

with a neighborhood factor variable, determined by the zoning district type. 
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The neighborhood factor determines the weighting of neighboring cells in 

determining the cell social structure. It is noted as F, such that Fij is the 

neighborhood factor for the cell at grid location (i, j). A radius one Moore 

neighborhood is still used, so the number of neighborhood cells on a square grid is 

8. Given that Sij(t) is the average social structure of all residents at cell (i, j) at time 

step t, and with 8 neighboring cells (i’, j’), the social structure of cell (i, j) at time 

step t is denoted as Vij(t) such that: 
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Note that for the case Fij = 0, Vij(t) = Sij(t). This is identical to the previous version, 

where high density cells ignore neighboring cells when determining cell social 

structure. Likewise, for Fij = 1, Vij(t) is an average of the Sij(t) for all of the cells in 

the 3 × 3 neighborhood. Thus the options of the original version are still present, but 

intermediate levels of neighborhood interaction are now possible. One difference 

from the previous version is that the neighborhood factor is determined only by 

zoning type, and not the actual density of a cell. While we can expect a high 

correspondence between density and zoning district type, this model allows for some 

variance in behavior. For example, it is now possible to model high levels of 

interaction in a densely populated neighborhood that is primarily residential, as 

might be seen in the eastern half of Vancouver. 

Table 1: Neighborhood factor by zoning district type 

 

The original model was typically run on a 50 × 100 grid of cells that contained a 

total of 9500 households on average. The capacity of the City of Vancouver from the 

data generated is 253,680 dwellings. Running the simulation model with this 

massive increase in households resulted in the program grinding to a near standstill. 

Upon analysis, the part of household behavior that demanded the most processor 

resources was related to residence change: the decision to move and the process of 

finding a new home location. The solution to this problem is to change the temporal 

scale of the model. Previously, time steps corresponded to one month, that being the 

shortest duration conceivable between typical residence changes. With a time step of 

that length, all households needed an opportunity to evaluate their satisfaction with 

Zoning District Type Neighborhood Factor 

Single Family Dwelling  1.0 

Limited Agriculture 1.0 

Two Family Dwelling 0.7 

Multiple Family Dwelling 0.3 

Comprehensive Development 0.0 

Commercial 0.0 

Industrial 0.0 

Light Industrial 0.0 

Historical 0.0 
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their current location and decide whether or not to move. By changing the duration 

of a time step to a single day, it became acceptable to only give a small proportion of 

the total household population the opportunity to consider movement. Social 

structure changes due to social interaction and personal factors could still occur on a 

daily basis. This change in scale enabled the program to run at a reasonable speed. 

However, some adjustments to the model would be required. The implications of 

changing the temporal scale are discussed in the next section. 

Results 

With the change in temporal scale, fewer households are given the opportunity to 

move during each time step. Since the cells are subject to influence from their 

neighbors in the steps that they do not change location, it seemed likely that the new 

model would be sensitive to changes in the social influence factor variable. This 

variable determines the magnitude of change in social threshold of a household 

being influenced by its neighbors. In order to test this, the simulation was run for 50 

steps using a range of values for the social influence factor, and the standard 

deviation of the social threshold values of the households was recorded at both the 

beginning and end of a run. Table II lists the average standard deviations for five 

runs of each value chosen for the social influence factor. No standard deviation 

score for any run varied more than 1% from the average. 

Table 2: Sensitivity to Social Influence factor 

 

Not surprisingly, the initial standard deviations are almost identical, since they are 

dependent only upon initialization of the households, prior to any opportunity for 

social influence. The final standard deviations show the impact of the social 

influence factor: large values result in small amounts of variance in social threshold. 

In other words, when the magnitude of social influence is high, the social structure 

values of the households move closer to each other. This takes place through local 

interactions, but occurs throughout the system. This results in an averaging effect 

that causes social threshold values to approach zero over time. 

Figures 3 and 4 illustrate the effect of the social influence factor. The non-residential 

areas are colored black; this includes parks and industrial areas. The remaining areas 

are residential, colored in a grayscale continuum to denote social structure, where 

white is positive and black is negative. Gray coloring shows areas where social 

structure equals or is close to zero, and these clearly dominate in Figure 3, a high 

social influence factor scenario. In Figure 4, there is more variation in social 

structure values, as shown by speckling cell coloring in the residential areas. 

 

Social Influence 

Factor 

Initial Social Threshold 

Standard Deviation 

Final Social Threshold 

Standard Deviation 

0.1 2.020462 0.4595 

0.01 2.021267 1.857773 

0.001 2.020333 2.111683 

0.0001 2.021514 2.139422 
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Figure 3: The simulation run with social influence factor set at 0.1. 

  

Figure 4: The simulation run with social influence factor set at 0.001. 
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Discussion 

One issue that turned out to be very important when bringing real data into a 

simulation model is scale. The effect of changing the temporal scale has already 

been discussed, but the choice of spatial scale was also critical. Although it was 

relatively easy to prepare the data at a variety of resolutions, actually getting each of 

those data sets to run was more of a challenge. Table III summarizes the time it took 

the program to initialize the model entities (cells and agents) and also the time to run 

the simulation for 50 time steps. This was done for each resolution available, and 

also performed both with and without attractors present in the environment. A dual 

core 2.0 Ghz AMD CPU system with 2 gigabytes of memory and running Windows 

7 was used to test the program. 

Table 3: Program Execution Time 

 

In the case of the highest resolution, 25 m2 cells, the program was unable to run at 

all due to insufficient memory. With the cells at 50 m2 in size, the program was able 

to run successfully, but the times are an order of magnitude slower than at the lowest 

resolution (100 m2). Initially, households searching for a new location would 

compare each potential location with all of the appropriate attractors in the entire 

environment. This resulted in the run time for scenarios with attractors taking 

roughly twice as much time as they currently do. However, since attractors do not 

move in the model, a preprocessing stage was added in which the relative locations 

of attractors to each cell are calculated. This has dramatically reduced the run time 

for scenarios with attractors in them, in exchange for a longer initialization time. 

This trade-off is particularly worth it for long runs of a thousand time steps or more. 

Eliminating redundant work and improving efficiency can often be ignored in 

research software development when working on abstract models due to the 

processing power of modern CPUs. Using large data sets from real sources changes 

this: it is possible for the CPU, memory or both to be insufficient to run the program 

at a satisfying pace. 

This version of the program did not include a legend explaining the meaning of the 

colors shown in the display. This was an oversight due to the simplicity of the base 

model, where screen elements could be easily explained verbally. However the 

added complexity of the extended model makes verbal explanation inefficient and is 

intimidating for people new to the program. Of course, having a legend is one of the 

cornerstones of cartography, being a key by which the information contained in a 

map can be interpreted by a reader. By extending the project to make it clearly 

geographical in nature, the importance of a legend was made apparent. A legend 

implemented in software can be very flexible, adjusting its contents dynamically to 

the factors currently on display and their associated levels. 

Cell Size 

(m2) 

Initialization Time (seconds) 

No Attractors     Attractors 

Run Time (seconds) 

No Attractors      Attractors 

100 0.45 18.03 10.83 11.44 

50 1.5 333.01 165.25 170.62 

25 –––––––––––––     insufficient memory     ––––––––––––– 
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However, there is also a more fundamental issue at work here: research is only 

valuable if it can be communicated to others. This is even truer of research that is 

intended to be used by others in the manner of a tool, like with a software model. It 

is easy when working on a program by oneself to forget about all of this, since the 

intimacy engendered by the familiarity of the inner workings of the system allows 

immediate comprehension of the program’s behavior. Research software must 

prioritize explanation and communication in order to reach out to colleagues and 

peers. 

Conclusion 

While still in its early stages, this project illustrates several considerations that can 

arise when enabling a simulation model to utilize real data. For applications that 

involve geography, determining the appropriate temporal and spatial scales is of 

particular importance. A successful strategy employed here is that of simplifying the 

problem first, either by using coarse data or reducing the number of operations, 

before attempting to adjust the model in terms of behavior or efficiency. The 

advantage of this strategy is that a working model can be achieved more quickly, 

which can in turn be used to facilitate further improvements. 
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Abstract 

Using standard and third-party libraries of Python, we generate a cellular automaton 

with geospatial information to study spatial externalities. Cells correspond to 

polygon geometries to define the shape, size, and neighborhood configuration, and 

the transitional rule consists of a simple spatial autoregressive model. To illustrate 

the construction and performance of this model, we use data of the Mexico City 

Metropolitan Area for studying production spillovers. The results suggest a simple 

method of building a cellular automaton using Python’s libraries that process 

efficiently geospatial data and produce effective spatial simulations for the social 

sciences. 

Introduction 

The increasing capability to collect, compute, and visualize geographic 

information is one of the most challenging and novel tasks for fields related to 

spatial analysis. Although the existence and development of the Geographic 

Information Systems (GIS) and computational platforms, the integration of 

cellular automata (CA) to the GIS technology is not trivial [1, 2, 3, 4, 5]. In 

particular, a dynamic programming language applied to social sciences is required 

to process, analyze, and develop geospatial information. 

Python (http://www.python.org/) represents one of the best-developed 

programming languages used for a variety of GIS domains. Its relevance consists 

in versatile applications that combine standard and third-party libraries covering 

and supporting many programming needs, for example to write simple functions 

or to design complex modules. 

The purpose of this work is to show the application of such libraries for 

generating a CA that uses geospatial information, specifically vector geometries, to 

define the shape, size, and neighborhood configuration of cells, and that applies a 

mailto:igorlugo@correo.crim.unam.mx
http://www.python.org/)
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simple spatial autoregressive model (SAR) as a transitional rule to analyze the 

effect of spatial externalities in urban areas. 

We exemplify the construction and performance of such CA with data of the 

Mexico City Metropolitan Area (MCMA) to explore production spillovers. The 

data is based on a vector layer that contains polygon geometries related to 

census tracts (CT). Each of them includes industrial census data in the year of 

2004. 

The rest of the document consists of four sections. The second section presents 

a summary of computer developments, including Python libraries, for spatial 

simulations. The th i rd  sec t io n  explains the construction of the CA. The fourth 

section illustrates the usage of it, analyzing spatial externalities in the MCMA. 

Finally, we conclude with a section of closing remarks. 

Computer Developments for Spatial Simulations 

Nowadays, computer developments related to geospatial information are based on the 

GIS technology in which simulation platforms have integrated it into their 

environment for analyzing complex spatial phenomena. 

Some of the most important simulation platforms with such a characteristic are Swarm, 

NetLogo, Cormas, and Repast. They use geospatial vector data (points, lines, and 

polygons) to provide a more realistic representation of the spatial organization, but in 

practice they are limited to geoprocessing, manipulation, and store methods [6]. From 

the point of view of the modeler, although these platforms offer a simple and 

powerful programming language, a graphical interface, and a comprehensive 

documentation, they exhibit higher costs of learning [6, 7, 8]. 

Dealing with such restrictions, we use Python as our computing framework that not 

only presents a collection of features covered and supported much programming needs 

and showed a very simple and consistent syntax, but also provides a wide range of 

libraries making possible to process and develop geospatial data for social simulations 

[9, 10, 11, 12]. Such libraries are OGR (http://www.gdal.org/ogr/) to manipulate 

geospatial vector information, NumPy (http://numpy.scipy.org/) to handle computation 

of large and multidimensional numeric data, Matplotlib 

(http://matplotlib.sourceforge.net/) to compute and plot 2D data, and Pygame 

(http://pygame.org/) to create video games. These and other libraries, for example 

PySAL (http://pysal.org/) and Rpy (http://rpy.sourceforge.net/), have increased in the 

last years, showing an important growth in the programming contributions compared 

to other languages. Some benefits of these libraries are to process efficiently 

geospatial information and develop methods for advance spatial operations, for 

example storing environment results and speeding up the simulation performance. 

Geospatial Cellular Automata 

The first component for modeling a CA with geospatial information is the 

neighborhood configuration that represents different levels of connectivity, contiguity, 

and distance between localized objects [13, 14, 15]. Following the work of Moreno 

et al. [5, 16] who proposed a model called vector-base geographic cellular automaton 

(VecGCA), we define a CA with such a neighborhood as geospatial cellular automata 

http://www.gdal.org/ogr/)
http://www.gdal.org/ogr/)
http://numpy.scipy.org/)
http://numpy.scipy.org/)
http://matplotlib.sourceforge.net/)
http://matplotlib.sourceforge.net/)
http://pygame.org/)
http://pygame.org/)
http://pysal.org/)
http://pysal.org/)
http://rpy.sourceforge.net/)
http://rpy.sourceforge.net/)
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(GCA). Two differences exist between Moreno’s et al. and our model: the name and 

application. We are interested in simplifying the model identification and 

generalizing the applicability for social simulations. 

The second component ofthe GCA, which differentiates the social science application 

from others, is the transitional rule. In this case, we use a SAR process for studying 

the neighboring effects of productivity. 

The following subsections present the construction of the GCA by showing the 

application of Python’s libraries for generating the neighborhood configuration and by 

explaining the derivation of the transitional rule from the unconstrained spatial 

Durbin model. 

Neighborhood configuration 

Based on the object-oriented paradigm, we mix the OGR, NumPy, Matplotlib, and 

Pygame libraries to show the construction of a set of functions and a class object 

that produces a GCA (Figure 1). 

 

Figure 1: Integration of libraries 

Functions manipulate geospatial data in order to extract, save, and retrieve the geometry 

of each vector layer feature, using a binary format. The class object defines each cell and 

visualizes it in a surface object. After building the spatial configuration, we define the 

transitional rule to perform the spatial simulation. 

The set of functions processes geospatial information by using the OGR library. 

Modules of such library help us to create functions related to read, save, and retrieve 

data (Figure 2). 

 

Figure 2: Basic functions 

The first function reads the geometry of each feature and returns a dictionary (associative 

array) indexed by keys (id codes) and values (geometries). This dictionary is an efficient 

Python object to store and extract geospatial data, and it depends on the size of 

information. Then, using the NumPy library and the created dictionary, we save and 

retrieve information as a binary format.
1 

In sum, these functions help to collect 

fundamental geospatial data for generating the structure of the GCA. 
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Next, using the Python’s class object, we create the neighborhood structure of the 

GCA. Each cell corresponds to specific feature in the vector layer, showing unique 

location, shape, size, and neighborhood configuration. Two types of information define 

this class: attributes and methods (Figure 3). 

Attributes characterizes the object, for example the id code of the feature, and methods 

modifies, computes, or extracts such attributes using functions, for example returning 

the id code of the first feature of the layer. Three basic attributes define a cell in 

the model: id code, geometry, and neighbors. On the other hand, the essential 

method is a function that draws the geometry of a cell in a surface object. Applying 

the instantiation operation, which creates a new instance of the class, we assign a cell 

to every feature in the vector layer. Finally, cells are collected in a list object, 

container of items. 

 

Figure 3: Python class object 

To conclude the construction of the GCA, we use the Pygame library for displaying 

the geometry of cells into an alternative GIS environment, a window in the desktop. 

We use the list object of cells and the drawGeometry() function to reproduce the 

geospatial information of the original vector data. In addition, the Matplotlib library 

is applied for generating simple statistical measures and graph visualizations. 

Transitional rule 

The transitional rule is related to the analysis of spatial externalities. Economists and 

geographers have studied them for many years, where the former have contributed 

importantly in the theoretical and empirical analysis of them [8], and the latter have 

proposed significant cellular automata models as a tool for analyzing spatial dynamics 

[17, 18]. In this case, the unconstrained form of the spatial Durbin model applied in 

spatial econometrics provides the general framework to define a transitional rule [19, 

20]. The unconstrained model in matrix notation is specified as follows: 

y = λ Wy + X β + WX γ + u   (1) 

where y is n by 1 vector of a dependent variable, λ is the spatial autoregressive 

coefficient, Wy is the spatially lagged dependent variable, X is a set of explanatory 

variables, WX is a set of spatially lagged exogenous variables, γ is the coefficient 

associated to WX, and u is a vector of error terms [20]. 

Based on equation (1), we define the transitional rule as the following SAR model: 

y = λ Wy + u   (2) 

Equation (2) suggests a diffusion process depended on the scale effect in the 

neighborhood of each cell and randomness. 
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Production Spillovers in the Mexico City Metropolitan Area 

In this section, we illustrate the application of the proposed GCA, presenting the case 

of the MCMA to analyze the spatial diffusion of productivity. The geospatial 

information of the area corresponds to a set of CTs (5004 polygons), which the 

Mexican Statistics Office (INEGI in Spanish acronym) defines as small urban-area 

units confined by physical and natural limits, for example streets, avenues, and rivers 

[21]. They define the scale and structure of the analysis and exhibit data of labor 

productivity in the manufacturing sector (Map 1). 

 

Map 1: Spatial structure of the MCMA. 

Applying the read and store functions explained in the past section to the geospatial 

data of Map 1, we obtain a dictionary formed by id codes as keys and geometries, 

neighbors, and productivity data as values of each feature. Then, we create each cell 

of the GCA, using the class object (Figure 4). 

 

Figure 4: Cell class object 

Each cell has four attributes: id code, geometry, neighbors, and productivity. The id 

code is a classification number associated with every CT, geometry contains 

coordinates that defines the urban polygon, neighbors refer to CTs vicinities 

(contiguous and noncontiguous), and productivity corresponds to a statistical value 

of the manufacture sector. 
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Two sets of functions define the class method. The first returns the value of 

attributes, and the second displays and modifies the geometry and productivity 

data respectively. 

Using the cell class, we generate an instance object that is collected in a list 

object. 

Then, we reproduce the spatial structure of the MCMA, using the setGeometry() 

function (Figure 5). 

 

Figure 5: Visualization of the GCA 

Next, we specify the transitional rule followed the equation (2), specifically a 

SAR time lag-process [19, 20, 22]. This process provides the local and simplest 

mechanism to produces a change in the level of productivity per cell in the 

GCA. We define it as follows: 

Pi,t+1 = ρW Pi,t + εi,t   (3) 

where Pi,t and Pi,t+1 are the productivity of cell i at time t and t+1 respectively; ρ 

is the spatial autoregressive parameter; W is the spatial weight matrix, which 

depends on the productivity value of k cells associated with an i neighborhood at 

time t, Ωi,t;
3 and εi,t is the independent disturbance term normally-distributed. 

Therefore, WPi,t is row standardized as follows: 



Lugo and Valdivia,  Geospatial Cellular Automata Programmed in Python 

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 45 

WPi,t = 1 / n ∑     
 
      

  (4) 

Equation (3) and (4) describe a scale averaging model that spreads the 

productivity throughout the system based on local conditions [22, 23, 24, 25]. 

In addition, equation (3) only operates when the CT has at least one adjacent 

neighbor, otherwise the rule follows the next specification: 

Pi,t+1 = ρ Pj,t + εj,t   (5) 

where Pj,t corresponds to the productivity value of the CT with the shortest 

distance from i to j. 

Overview of the process 

To explain the dynamics of the GCA, we present a flowchart to display how every 

cell interacts to each other and changes its value of productivity according to its 

neighborhood configuration (Figure 6). 

 

Figure 6: Programming routine 

Once cells are collected in the list object, the simulation process starts defining the 

transitional rule of each of them. The productivity value is retrieved from the vector 

data (getProductivity()), and each cell inspects its neighbors (spatial lag-process). If 

the cell has not neighbors, it will compute the shortest distance to the closest neighbor. 

This measure is based on the geometric centroid of polygonal cells, and it quantifies 

a maximum number of neighbors equal to one. On the other hand, if the number of 

neighbors is different to zero, each cell will apply the SAR (1) process, which we 

rename as the average value of productivity (AVP). Neighbors of each cell are row 

standardized, and the cell is synchronously updated. 

We consider the scaling parameter ρ for regulating the intensity of the contagion 

among cells [26, 27, 28, 29]. Essentially, from an economic perspective, three equilibria 

outcomes are possible when ρ is equal to one: 1) all CTs have zero productivity, 2) 

everyone has the same average productivity value equal to the initial condition, and 

3) each CT increases its value until reaching an exogenous upper bound. Finally, we 
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introduce in the spatial lag-process a white noise with the form of a random variable 

iid (0,1) representing external shocks in the system. 

The core of the programming routine is a loop that updates the productivity 

attribute of each cell in every time step under the conditions just mentioned. 

That is, at each time step the productivity value is stored in a new list object. 

Neighborhood and productivity characteristics 

Two important characteristics of the GCA applied to the MCMA are studied 

before we present simulation experiments: neighborhood structure and 

productivity value. The neighborhood structure is analyzed by a histogram 

(Figure 7), where the x-axis represents the number of neighbors around a cell, 

and the y-axis corresponds to the probability of a cell related to the number of 

neighbors. 

 

Figure 7: Neighborhood configuration: µ = 5, σ = 2 

The histogram show an asymmetrical distribution with a positive skew meaning 

that few cases of cells have more than 10 neighbors, and most of them have a 

neighborhood formed by 10 or less cells. In particular, around 70% of cells 

have four to six neighbors, the mean of the distribution is equal to five with a 

standard deviation of two, and the first bin exhibits few cells with zero 

neighbors or isolated cells. In brief, the neighborhood configuration presents a 

high level of connectivity and contiguity, exhibiting a heterogeneous structure 

that affects the dynamics and interactions across the area [30]. 

In addition, Figure 8 displays a distribution that exhibits the productivity value in 

natural logarithms.4 

This figure shows a normal distribution with a mean of 3.97 and standard 

deviation of 0.8. More than 70% of cells have a productivity value between 2.94 

and 3.97 representing 1.27 and 3.71 thousands dollars/employee respectively.5 
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Figure 8: Distribution of productivity: µ = 3.97, σ = 0.8 

Deterministic model 

The first case of the spatial experiments is a deterministic model. It displays a 

graphical interface and exhibits one scenario of spatial interaction, which 

represents the simplest case of analysis [31]. The transitional rule of the model is 

as follows: 

Pi,t+1 = ρW Pi,t   (6) 

where the productivity of each cell at time t+1, Pi,t+1, depends on ρ and the AVP 

of its neighborhood at time t, WPi,t. 

The initial condition of the experiment is based on the productivity value of 

each CT, and no additional inputs are added to the spatial interaction. To 

simplify the analysis, we set ρ equal to one. Under these conditions, we expect 

that the system produces contagion in the long run, where all CTs will converge to 

the average initial value. Nevertheless the dynamics of contagion is uneven along 

the time, the model presents important implications in terms of spatial inequality. 

Figure 9 displays the sequence of the simulation in six different time steps, where 

the run time is equal to 100, and each time step corresponds to a year. 

Figure 9 shows the spread of productivity in the MCMA based on three levels: 

low, medium, and high.6 In time = 0 (initial conditions), we see a large number 

of cells with low productivity values. On the other hand, only few cells have 

medium and high values. In the following time periods, cells with medium and high 

values extend their productivity to close areas. For example, in time = 20 and 

time = 40, there is a localized and well-defined area of medium and high values. 

The last three spatial visualizations show a reinforcement of increasing productivity 

values. In essence, medium and high values are more probable to spread their level 

of productivity to contiguous cells and produce a localized area of intense spatial 

interaction. 



Lugo and Valdivia, Geospatial Cellular Automata Programmed in Python 

48 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 

 

Figure 9: Deterministic model 

In addition, the dynamics of the productivity based on AVP values and the 

initial and final distribution of them are displayed in Figure 10 and 11. 

 

Figure 10: Dynamics of productivity 
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Figure 11: Initial and final productivity distribution 

Figure 10 shows only a small increased and stable pattern in the AVP value. 

From an initial value of 3.97, the AVP increases and remains stable around the 

value of 4.02, and its dispersion decreases from 0.8 to 0.3 (Figure 11).7 This 

result suggests that, around the time step equal to 20, the area of medium and high 

levels of productivity persists until the last time step, that is, the spatial 

interaction increases and intensifies the productivity. 

Random Model 

Under this experiment, we consider equation (3) as the transitional rule. The use 

of the random variable iid (0, 1) produces a stochastic spatial lag-process and 

simulates external shocks in the system. Applying a batch processing, we run 

each simulation 1000 times with a total number of time steps equal to 100. 

After running the model, we obtain the following results: a mean value of 4.021 

(3.9 thousands dollars/employee), a variance equals to 0.011, and a standard 

deviation of 0.113 (8.04 dollars/employee). Compared this mean value with the 

initial condition of productivity in the deterministic model (3.7 thousands 

dollars/employee), we see an increasing value of the AVP, approximately 5%. In 

addition, Figure 12 shows an increasing dispersion of the average productivity in 

three different time steps, meaning heterogeneity in every simulation. These 

results confirm an incremental productivity with high dispersion in its values 

throughout cells. 

 

Figure 12: Average productivity distribution in three different time steps 
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Finally, Figure 13 presents 10 simulations to exemplify the effect of including the 

random component in the deterministic model. Figure 13 shows a wide variety of 

dynamics in productivity, which fluctuates around the long-run equilibrium 

presented in the deterministic model.  

 

Figure 13: Teen simulations of productivity average growth 

Conclusion 

The integration of standard and third-party libraries into a programming routine in 

Python makes the proces of building a GCA easy, if we compare it to other 

computer platforms. Python’s libraries provide a set of powerful tools to analyze 

spatial phenomena, generate spatial simulations, and extend the range of 

application in social sciences. This integration offers the advantages to study 

large and complex data and to add other libraries that cover different types of 

analysis and that develop specific geospatial applications. 

The proposed GCA model incorporates efficiently the heterogeneous 

neighborhood structures and transitional rules related to spatial externalities. In 

the case of production spillovers in the MCMA, we can extend the model to add 

more variables, for example the human capital (number of years a person attends 

school) and its neighborhood average value. They can complement the traditional 

spillover analysis and give new insights into the mechanism of spatial interactions 

in metropolitan areas. 
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Footnotes 

1. Another option to save and retrieve this information is the pickle module 

(http://docs.python.org/library/pickle.html). 

http://docs.python.org/library/pickle.html)
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2. Options of Python’s libraries for drawing objects are the following: Pyglet 

(http://www.pyglet.org/) and PyGTK (http://www.pygtk.org/). 

3. In this case, the type of neighborhood induces heteroskedasticity (the number of 

neighbors is different in each cell). 

4. In order to avoid negative values of productivity, we use the logarithm function: 

log (1 + x), where x = productivity. 

5. The inverse of the logarithmic value is computed as following: exp (z) – 1, where 

z = log (1+ x). In addition, the exchange rate applied is 1 USD = 14.05 MXP. 

6. The color diffusion is based on a frequency distribution of productivity per time 

steps, wherethe total number of bins is 10. Low values are related to the first bins 

between one to seven, medium values are between seven and nine, and high values 

correspond to nine and ten. 

7. The small oscillation between every time step is related to the synchronous update. 
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Abstract 

Results are presented from the application of a Cellular Automata (CA) model, built 

using the Metronamica® software application, to the Doñana Natural Area, a series 

of interconnected ecosystems of outstanding importance for biodiversity at the 

mouth of the River Guadalquivir in the Spanish Autonomous community of 

Andalucía, South West Spain. A National Park since 1969 and recognized by 

UNESCO as a world heritage natural property since 1994, Doñana has nevertheless 

suffered serious degradation and loss of large areas of marshland, dune and coastal 

habitat since 1950, through tourism development, intensive agriculture and 

afforestation of fast growing non-native tree species (e.g. Eucalyptus), and 

corresponding contamination and over-exploitation its aquifer. The paper discusses 

the development of a pilot model for Doñana, from analysis of land use dynamics, 

through technical calibration procedure and assessment of calibration gioodness of 

fit to cross tabulation and map comparison. 

A trial simulation is presented. The paper concludes with a brief discussion of the 

potential of the model for simulation of future scenarios, and the improvements that 

will be made in the construction of the full model. 

Introduction 

The Doñana Natural Area (hereafter Doñana) is a series of interconnected 

ecosystems of outstanding importance for biodiversity at the mouth of the River 

Guadalquivir in the Spanish Autonomous community of Andalucía, South West 

Spain. A National Park since 1969 and recognized by UNESCO as a world heritage 

natural property since 1994, Doñana has nevertheless suffered serious degradation 

and loss of large areas of marshland, dune and coastal habitat since 1950, through 

tourism development, intensive agriculture and afforestation of fast growing non- 

native tree species (e.g. Eucalyptus), and corresponding contamination and over- 

exploitation of its aquifer. Despite a series of measures aimed a promoting 

sustainable development, this important natural area remains highly threatened by the 

mailto:richard.hewitt@uah.es
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modern development paradigm of growth without limits [1]. In the following 

communication, results are presented from the application of a Cellular Automata 

(CA) model, built using the Metronamica® software application, developed by the 

Research Institute for Knowledge Systems (RIKS), of Maastricht, Netherlands, to 

Doñana. The research was carried out under the remit of the DUSPANAC research 

project (funded by the Autonomous Body for National Parks (OAPN) on behalf of 

the Spanish Environment Ministry). The project is ongoing, but nevertheless, three 

important objectives have been already achieved: Preliminary land use change 

analysis [2]; Stakeholder engagement for determination of model parameters [3] and 

construction of a pilot model, subject of the present communication. 

Aims of the paper: 

1. to provide a brief background to the application of CA-type models to modelling 

of natural areas. 

2. To explain the modelling procedure employed, which may serve as a prototype for 

future land use modelling of natural areas.  

3. To review the lessons learnt from the pilot model, and the steps which will need to 

be taken in future to improve the model and its applicability to decision support in 

the Doñana natural area. 

The contribution of CA to land use modeling 

 

Map 1: Doñana study area 

Most modern-day applications of CA are based on the work of von Neumann in the 

late 1940's, posthumously published as The Theory of Self-Reproducing Automata 

[4]. The application of CA to land use is usually attributed to the geographer Waldo 

Tobler, who developed the foundations for a raster-based "cellular geography" [5] 



Hewitt, Cells but not cities 

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 55 

Early CA land use models were aimed principally at modeling urban growth (e.g. 

[6]), but the discipline has since expanded its scope to take in non-urban applications 

(e.g. [7]), and has increasingly moved beyond pure description and explanation of 

patterns of land use growth and change into, for example, policy recommendations 

for greener growth and sustainable development (e.g. [8]), integrated decision 

support and participatory approaches [9] and natural hazard assessment [10]. While 

CA techniques have been applied to the study of a wide range of natural and 

ecological phenomena [11], studies of land use change in natural areas using CA- 

type models are less common, principally because the pattern of cellular evolution 

exhibited in a typical CA land use model is particularly appropriate for modelling 

urban land use change. However, some notable examples do exist. White et al [12] 

constructed an integrated CA model for the Caribbean island of St Lucia, designed as 

a decision support tool to explore possible environmental, social, and economic 

consequences of hypothesized climate change. In this work (SimLucia), evolution of 

natural vegetation, forest and agriculture was actively modelled [12]. In a more 

recent study, Moreno et al [13] incorporated a CA known as SpaSim to model the 

dynamic evolution of a forest preserve in Venezuela using land cover classes such as 

forest, forest plantation and agriculture. The work aimed to understand the land cover 

dynamics that have occurred in the reserve, simulate the effect of land use policies on 

the reserve, and evaluate their effect on sustainability of the forest reserve. 

CA modeling and Doñana 

In Doñana, the researcher is confronted with two worlds, two opposing poles, of 

conservation versus development. The development boom, principally based on 

tourism and intensive agriculture, has transformed the region over the last 60 years, 

from one of the most impoverished in Spain to the point where per capita income is 

above the national average [1]. Conversely, there has also been increasing 

recognition of the importance of Doñana and ever greater efforts made to protect it. 

Unfortunately, over the same time period, areas outside the limits of the protected 

space have become increasingly degraded and are clearly affecting the protected area 

itself (e.g. [14]. The conservation versus development model has thus entered a crisis 

phase. However, though it is quite easy to see what the problem might be 

(development that favors the regional economy in the short term but destroys an 

important natural area), it is not at all easy to bring about a solution. CA land use 

models are powerful tools for understanding this type of complexity, as they allow 

actor decisions to be represented as land use consequences in the territory. The CA 

neighborhood rules of attraction and repulsion are ideal for representing the 

competition and pressure for the same land use location that is so acute in, and so 

characteristic of, the Doñana natural area. 

Methods 

Drawing on historical patterns of land use change since 1990 detected by cross 

tabulation analysis of corine land cover maps [2], together with information gathered 

in participatory workshops, an initial, or 'pilot' CA model was developed. The pilot 
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model was an essential precursor to the main modeling phase and development of 

future scenarios as it allowed for the testing of software, data and methodology prior 

to commitment of extensive resources. 

The modeling software that we used in this project is part of a suite of software, a 

tool kit called Geonamica®. Metronamica®, the land use modeling component of 

Geonamica®, is a geographical land use model (sensu Tobler [5]), operating in a 

graphical application environment for the windows platform. At the core of the 

model is the transition potential (TP) computation which determines the future state 

of the cells (change or no change). TP is calculated as a function where a set of 

endogenous factors interact to update the state of the cell in every time step 

(oneyear). These factors are neighborhood rules, which determine the relationship 

between different land use classes in terms of attraction and repulsion; accessibility 

to facilitate or constrain land use conversions depending on the distance from the 

cells to the network; zoning, that is, extant land planning regulations; a set of 

biophysical suitability parameters; and a stochasticity variable in order to avoid over-

determinism in the model. This TP function determines the likelihood of each cell in 

the model to change from one use to another. 

  

Figure 1: the Modeling chain 

Construction of the model followed the procedure defined by RIKS [15], this can be 

briefly summarized as follows: 

 

1. Analysis of dynamics of land use/cover change (LUCC) in the territory to be 

modeled. 

2. Definition of activity types according to LUCC dynamics observed: land use 

classes must be divided into three groups, vacant (passive, does not grow but is 

occupied by other land uses - e.g. non-irrigated crops) function (active, dynamic, will 

grow and occupy other land uses, e.g. urban residential) and feature (static, 

restrictive, will not change and cannot be occupied by other land uses - e.g. water) 
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3. Introduction of initial land use map M1 (corine 1990), classified according to 

activity types. 

4. Introduction of second land use map M2 (corine 2000), for model calibration. 

5. Introduction of land use demand for function land use classes for calibration, taken 

from M2 

6. Establishment of parameters (neighborhood rules, accessibility, suitability, zoning) 

7. Simulated map MS2 for technical calibration 

8. Other simulations, scenarios etc. 

 

After all parameters have been set (steps 1-6), transition potential is calculated for all 

of the maps in the model, and then applied to M1 to produce a simulation of change 

over the period between M1 and M2, expressed as a new map, MS2 (step 7). In this 

way, the first part of the model calibration begins, which we refer to here as technical 

calibration. Once technical and empirical calibration (see final section) have been 

completed satisfactorily, land use simulations based on future scenarios can be 

developed. 

Technical calibration procedure 

Technical calibration of the model is defined here as the process of obtaining an 

acceptable degree of fit between the simulated map, MS2 and the real map, M2 of 

the territory at the second date (in our case, the year 2000). The degree of fit gives us 

a guide to the reliability (confidence level) of the model with respect to the land use 

change trends observed in the territory. 

 

Figure 2: land use changes in Doñana, 1990-2006,  
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Land use change dynamics and activity types: 

With reference to figure 2, the principal LUCC in the territory observed from map 

comparison between 1990, 2000 and 2006 can be summarized as follows: 

1. Significant expansion of fruit and berry plantations (F) between 1990 and 2000 

(Intensive cultivation of citrus and strawberry). Principal contributing land uses (in 

order of greatest to least contribution) were grassland (PN) (55 ha), other irrigated 

crops (TRP) (44 ha), non-irrigated crops (TLS) (30 ha) and sclerophyllus vegetation 

(VE) (15 ha). Other irrigated crops have also increased, taking 29 hectares and 12 

hectares from VE and shrubland (MBT) respectively. 

It is clear that these changes represent agricultural intensification; they have all 

occurred outside the national park, just inside the area which is also excluded from 

the zone of lesser protection comprising the natural park. A 50 ha area of formerly 

irrigated land (TRP) in 1990 had become crop mosaic (MC) by 2000. Thus, in terms 

of land use dynamics (neighborhood rules), we see that TRP, PN, TLS and MBT are 

likely to be sensitive to occupation by F, and that MBT and VE are sensitive to 

occupation by TRP. Clearly, given the location of the new intensive cultivation, 

zoning will be very important in the model. F and TRP, and probably MC as well, 

need to be designated as function activity types in the model to reflect their 

susceptibility to increase, taking over other land use types. 

2. Important increase in MBT between 1990 and 2000, taking 912 hectares from 

broad-leaved forest (BF), and 96 hectares from mixed forest (BM). This increase has 

occurred principally in the north-west extension to the natural park (Figure 4). As 

MBT has continued to increase in the second period (2000-2006), this time from 

conifer forest (BC) (648 ha) and BM (137 ha), expansion of shrubland should be 

considered an important dynamic and also will be assigned to activity type function. 

3. The vulnerability of this location to development of tourist infrastructure is 

evidenced by the construction of a 52 hectare camp site (IDR) between 1990 and 

2000 in a zone previously given over to natural vegetation (VE) on the shoreline just 

to the north west of the national park (in a small pocket of land lacking natural 

protection related to the tourist resort of Matalascañas). A 53 hectare construction site 

is also in evidence. In the second period (2000-2006), 15 hectares of which had 

become urban fabric by 2006. It is clear that all types of urban fabric (TUC and 

TUD) as well as construction sites (ZC) and sports and leisure facilities (IDR) must 

be assigned to function activity types. 

Land use demand: 

Table 1: Land use demand for the 8 function activity types 

 

On the basis of the observed LUCC dynamics (Table 1), land use demand was set for 

the 8 function classes. 
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Neighborhood rules: 

The neighborhood rules (methods, step 6) are key to the transition potential 

computation which comprises the core of the CA model. To determine the 

neighborhood rules, relative values representing persistence, attraction and repulsion 

are applied to all land use categories with respect to the function categories in the 

model (Figure 3). These parameters are then applied by the model to each cell with 

respect to all other cells in its neighborhood, a total of 197 cells including the cell 

itself (up to 8 cells in any direction). As only the cells belonging to the function 

categories are have the ability to relocate within the model, neighborhood parameters 

must be set to establish their behavior, with respect to themselves (persistence) and 

other functions or non-functions (attraction and repulsion). The most intuitive way to 

explain this concept is in terms of a graph for each land use, having x representing 

distance in any direction away from a cell containing that land use and y representing 

relative force of attraction (RFA). 

 

Other parameters, accessibility, suitability and zoning: 

Three network layers were included in the pilot model, roads, irrigation channels and 

rivers. In the initial calibration, accessibility was applied only to the irrigated crops 

(TRP) and fruit and berry plantations (F) land uses, principally because these were 

the most important dynamics likely to be affected by accessibility conditions. Zoning 

parameters were established on the basis of the land use restrictions of the use and 

management master plan (PRUG), with highest and second highest level protected 

areas (reserve and restricted use) being designated strictly restricted (no occupation 

permitted by new land use), protected areas outside of these zones weakly restricted, 

and other areas, such as the buffer corridor, unrestricted for all anthropogenic land 

use functions. Non-anthropogenic land use functions (shrubland) were allowed 

everywhere. 

Technical calibration goodness of fit: 

The goodness of fit of the technical calibration depends on two key parameters, 

quantity and location. As we have seen previously, quantity is determined initially by 

the input demand for each land use, but ultimately by the amount of available land on 

the map relative to the ranking for that land use in the transition potential table; that 

is, even if all demand for one particular land use is not completely allocated, the 

model run may terminate anyway because all available locations have been filled 

with other land uses that scored more highly in the TP ranking. Although not all 

demand will necessarily be allocated, this is quite a satisfactory way to deal with real 

world pressure, competition and uncertainty. This makes it difficult to estimate the 

success of the technical calibration exercise solely in terms of quantity. A good basic 

starting point is to compare the cross tabulation for M1 and M2 with its counterpart 

for the simulated map (M1 and MS2); Table 2 (below). 

It can be seen that there are some early successes, and quite a few areas where the 

model has not performed well. For example, the expansion of the shrubland category 

(MBT) over this time period has been adequately represented in terms of gains from 
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the relevant categories in approximately correct proportions. Though there is clearly 

room for improvement, the model seems to be beginning to reflect the LUCC 

observed in reality. Turning to the expansion of fruit and berry cultivation (F), we can 

see, from the diagonal, that the inertia of this category (the RFA with respect to itself; 

Figure 3) is successfully preventing migration or occupation of existing F. The 141 

new hectares required have been drawn from grassland (PN) and (TRP), again 

reflecting the real situation. However, while in the model the major part of the gain to 

this category has come from PN, in reality we can see that vegetation (VE) and non-

irrigated land (TLS) have also contributed, something the model has been unable to 

reflect. 

 

Figure 3: Examples of neighborhood rules 

In this case the adequate response would be to return to the neighborhood rules and 

try to establish a greater attractiveness for F at distance 0 for the VE and TLS 

columns. The loss of 50 ha of other irrigated land (TRP) has been correctly modeled 

with respect to F, which has gained 35 ha in the model against 44 in reality. But 

again, something is not quite right, as in the model it can be seen that TRP has not 

passed 50 ha to crop mosaic (MC), as happened in reality (MC has instead gained 

from PN) and has lost 19 ha to TLS, a vacant land category which should not have 

gained. This behavior, gain to a non-function category, is probably caused by the 

model seeking to obtain the correct demand for TRP (which has decreased over the 

modeled period) and allocating excess cells to the first available category (i.e. 
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category 0, TLS). It needs to be remembered in these cases that the demand for 

vacant categories is invisible to the model. In this case, it is very likely that this 

unwanted behavior can be compensated for by making TLS more attractive to F, thus 

solving two problems at once. MC needs also to be made more attractive to TRP so 

that the model does not find itself with surplus demand at the end of the run. On this 

basis, further adjustments were made to the neighborhood rules, resulting in some 

improvements (Table 3). 

Table 2: comparison of cross tabulation results. Corine 1990 (M1) occupied the columns in 

both cases. M1 has been crossed with the first simulation attempt (MS2) at top, and with the 

real corine map for 2000, below. 

 

Table 3: second comparison of cross tabulation results after adjustment of neighborhood rules. 

 

With respect to location, once the quantity has been approximately correctly located 

by the iterative process described above (set neighborhood rules, output cross 

tabulations, adjust neighborhood rules, return to cross tabulations etc), the more 
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intractable problem of location can be considered. The key to a workable useful 

model (see [16]) lies in the production of a visually acceptable simulation, where 

land use changes can be seen by model end users and stakeholders to have occurred 

in locations where available empirical knowledge suggests it is likely to occur. 

 

Map 2: Map Comparison results for 4 key land use categories. In the legend, map 1 refers to the 

real map for the year 2000, while map 2 is MS2, the calibration simulation for the same date. 

The results of the model for MS2 (the year 2000) are shown above. Simple visual 

inspections were carried out in the Map Comparison Kit, a software application 

provided by RIKS for free download at http://www.riks.nl/mck/. Though the 

software does offer a range of techniques for statistical comparison of maps, in this 

case, the simplest, visual comparison method (per category comparison for each land 

use class) was used in this case to assess whether the simulation performance was 

broadly acceptable. The model shows success in some areas, for example (compare 

with Figure 2) in the area of extension to the park proper in the northwest corner the 

growth of new shrubland following loss of eucalyptus plantation has been simulated 

with a fairly high degree of success (MBT, map 2A). It can also be seen that the 

claims of success in terms of quantity (above) are not borne out with respect to 

http://www.riks.nl/mck/
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location. Though new hectares of fruit and berry cultivation (F; map 2C) were 

simulated in terms of changes to and from the appropriate categories, the simulation 

did not choose the correct locations. This is probably because there were a large 

number of possible locations given neighborhood, accessibility and zoning rules 

relative to a small quantity of new F to be allocated. 

Pilot simulation: massive expansion of citrus and strawberry 

The final part of the technical modeling process consists in the application of the 

calibrated model to future scenarios. For this purpose a simple simulation was built 

on the basis of empirical knowledge of the evolution of the Doñana natural area and 

the results of cross tabulation analysis of land use changes. This scenario postulates 

an explosive growth of citrus and strawberry cultivation to a total demand of 2000 ha 

in the currently available locations by 2030 (Map 3). The simulation, which we have 

called massive expansion of citrus and strawberry, is extreme. However, although 

continued expansion of intensive cultivation in the zone immediately adjacent to the 

protected natural area is highly undesirable from the point of view of conservation, 

the historical tendency does indicate that further expansion is possible. It is very 

unlikely indeed that an expansion of intensive citrus and strawberry cultivation as 

great as that postulated in this scenario would or could take place, but sometimes 

what if... type scenarios may be important in communicating future threats or risks to 

stakeholders or testing resilience of zoning measures against hypothetical worst-case 

scenarios. 

 

Map 3: Results of the massive expansion of citrus and strawberry scenario for the year 2030. 

Areas of fruit and berry cultivation are numbered. This highly unrealistic test scenario 
nevertheless illustrates the potential of the model to address real world questions of interest to 

natural resource managers, such as: what areas are most vulnerable to expansion of intensive 

cultivation? 

Conclusions and future work to improve the model 

At present, the work presented here has not attempted to integrate knowledge outside 

the realm of the technical accuracy parameters presented here by involving the 

stakeholder community in the model building process. It is generally accepted that 

decisions are likely to be implemented with less conflict and more success when 
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they are driven by those who are likely to bear their consequences [17]. Though 

participatory work is ongoing, some stakeholder feedback has already been obtained 

[3]; in summary, stakeholders and researchers are in agreement that the model could 

be improved in the following ways: 

 

1. Improved land use mapping. The corine land cover data used in the pilot study is 

too simplistic, future modelling work will employ larger scale land use/cover maps 

[3]. 

 

2. Accessibility maps were not included for all land cover types in the pilot model. 

Accessibility to infrastructures is likely to inhibit or stimulate LUCC, so including 

accessibility for a wider range of land use classes is likely to improve the model. 

 

3, Suitability maps were not included in the pilot model. Physical suitability is 

important to avoid allocation of particular land use types in areas where they are not 

normally suitable (e.g. irrigated crops in mountain areas). 

 

4. Study area does not take into account a large enough area to reflect all possible 

implications in the territory; the study area will accordingly be extended to include 

the whole of the hydrological catchment of the river Guadiamar (Map 1). 

 

5. At present, the scenarios discussed are very simple, and currently not aligned with 

those developed for Doñana through participatory workshops by Palomo et al [18]. 
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Abstract 

This paper aims to investigate a new way of locating potential impacts of flash 

floods. Mapping surface flow concentrations, using a new metric based on a cellular 

automaton RuiCells, is shown to qualitative align with observed and known 

instances of damage caused by flash floods in 4 small ‘dry valleys’ located in 

northern France (Parisian Basin). Numerical simulations enable the assessment of 

the relations between the organisation of thalwegs networks and surfaces for a given 

basin form. An index of concentration (IC) allows detecting the confluences in 

upstream of which networks and surfaces are spatially well organised. A strong 

correlation between observed damage, field experiments, local knowledge and maps 

of IC index exists as simulations underline many places where flash floods induce 

important material or human damage and where further surface flow concentration 

results in highly-incised gullies. In rare cases, no validation is possible because 

nobody can confirm the degradations. 

Introduction 

The origin and the prediction of flash floods in small and ungauged basins is 

getting increasing attention [1, 2] and the last decades have seen an increase in 

forecasting of such events in numerous countries [3, 4,]. Such type of natural 

hazards threatens people, causes increasing losses of buildings and infrastructures 

and occurs in a short time-duration. Generated shortly following high rainfall 

intensities, flash flood are characterized by sudden onset or rapid rising time. A 

surge may rush down the main valley just a few minutes after rainfall has 

peaked [5, 6]. To better address the lack of available information, various models 

and approaches have been carried out. By necessity, the investigations on recent 
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flash floods generally are event-based and opportunistic as they enhance the 

information content [2, 7]. While meteorological observations provide relevant 

details on the timing and location of convection in the storm environment [8], 

hydrological and physical processes remain still difficult to assess because: i) 

flow measurements and classical field-based experimentations (as the 

reconstitution of maximum peak discharges thanks to slack water deposits) are 

rarely collected in basins of small-size; ii) these flood are insufficiently 

documented and are difficult to monitor in real time because they produce 

destructive effects to measuring devices; iii) the infrequency of these events 

makes the statistical analysis and calibration of models delicate. 

In this study, our objectives are to use a cellular automaton approach (the CA 

known as RuiCells – 9, 10, 11] in order to: i) promote further understanding of 

the effects of runoff concentrations which are influenced by basin form, slope and 

the drainage network during flash floods and ii) to measure the potentials of 

concentration since local to global scales. The framework used is common to 

other cellular automata and respect two main properties: a CA is a model 

simplifying the reality to a group of automates dealing with information and 

inducing cellular actions; CA use precise and finite state, as homogeneous and 

interconnected cells. The guiding principle of RuiCells follows the idea that 

mechanical rules of flow based on topography can be combined with a cellular 

automata representation of spatial processes to better assess the complex relations 

between basin structures and surface flow pathways. While numerous distributed 

hydrological models have been realized with Digital Elevation Maps, none of them 

allow for the estimation of potential surface flow concentration in all parts within a 

basin. Numerous studies have typically focused on the relation between the global 

catchment morphology and its hydrological response measured at the final outlet. 

These studies underlined difficulties encountered when linking local responses (sub-

basins or hillslopes) to this global behaviour and this aim has been one of the main 

issues for geomorphologists since the 1970’s [12, 13]. A few studies have 

successfully shown that the drainage network organisation plays a key role on 

hydrological functionality. Others recently defined the global response as the result 

of linear system (with a linear relation between mean discharges and the basin sizes) 

and show that global catchment response can be summarized by an IUH, Instantaneous 

Unit Hydrograph [14], evolving in a Geomorphologic Instantaneous Unit Hydrograph 

[15]. However, in this study we use a cellular automaton approach to better link the 

local hydrological rules to the emergence of global hydrological responses. Our main 

goal is to identify all sub-basins in which high surface flow concentrations can be 

hidden at larger scales and this approach is applied on small- size basins where 

floods occurred in order to create prevention maps. Assuming that this tool is 

relevant to the planning of and protection from such types of events, it could be 

useful for the understanding of floods in valleys which remain ungauged. Moreover, 

definition of flood potential in temporary streams is required to assess the extent of 

probable flooding in the future. 
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Framework and structure of the specific French CA model RuiCells 

Previous experimentations in CA modelling for surface water flow provide several 

advices and recommendations. The main difficulty in these models is generally to 

establish all the links between topographic variables, such as the elevation and its 

derivative, and hydraulic variables as water fluxes. Furthermore, from a numerical 

perspective, square lattices induce problems for simulating the runoff routing [16], 

as surface flows do not follow the real drainage. Different studies also highlighted 

the critical influence of the DEMs cells size on the accuracy of extracted networks 

[17, 18]. Consequently, in the CA model RuiCells, we choose to use a lattice based 

on triangular, regular and interconnected cells based on a Digital Elevation Model 

(DEM) and we define simple rules to simulate the interactions between basin form, 

slope and the drainage network. 

The structure of RuiCells is basically summarized as follows. The first step 

permits to create a topological mesh in triangular finite elements. In this, the 

direction of the steepest slope gives the downstream direction of flow and this 

information available in each cell is draped over the DEM (figure 1). The 

lowest diagonal was chosen to obtain more realistic flows. Each cell contains 

the pointer to its lowest downstream neighbour. The s e c o n d  step a s s i g n s  

one hydrological rule for each cell: the triangular facets represent elementary cells 

on hill-slopes; the linear portions the thalwegs; and several nodes the local closed 

depressions. Combining these rules in the third step, we aim to simulate the 

interactions between these various surface water flows [18, 19]. Each cell is 

linked to upstream / downstream cell(s) by a flow graph to form a cellular unit.  

The connectivity between those cells is directed predominantly by the 

morphological link structured by the mesh (or lattice) as well as the  

n e igh bou rho od  topology of cel l s . There, contrary t other CA classical 

models, flow pathways are not only guided by the n e i g h b o u rh o o d  or 

v i c in i t y  conditions. This approach assumes that linear r u n o f f s  and s p a t i a l  

r u n o f f s  are dependent and a synchronous advection operator also avoids the 

problem of order in calculi. Indeed, process is iterative in RuiCells. It means 

that surface, flows or other values used during the simulation flow at the same 

moment. Consequently, RuiCells is based on a generalized cellular automaton 

model, in which cells have different facets and in which flow pathways represent 

real effects of the morphological structure and not only its topology. The 

structure of the CA used here is different from classical cellular automata 

models: we respect formal guidelines (a spatial lattice, a small number of states, 

one iterative process) but we adapt them to answer to one hydrological problem 

(hence, important changes appear for transition or neighbouring rules). So it can 

be considered as a GCA – Geographical Cellular Automata [20]. 
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Figure 1: Construction of the cellular unit based on a Digital Elevation Map in RuiCells 

The Cellular Routing Scheme (CRS)  

At the beginning of the simulations, cells are initialized with their own surface 

and the automaton handles the advection operator moving each surface between 

each cell simultaneously. We conserve the main property defined as locality in 

classical Cellular Automata [10]: the transition rules operate on cells directly 

based on local neighbourhood. But in this case, we do not use the Moore (4) or 

Von Neumann (8) neighbourhood (for example) because the surface flow follows 

the downstream direction as defined previously. Here, the Cellular Routing 

Scheme (CRS) depends on the surface flow from each cell and on the updating 

of the values of all the sub- states. Surface flow is routed downstream via each 

row of cells until the downstream boundary is reached. The main difficulty rises 

when two neighbouring cells exist. A previous study has shown that a flow 

partitioning in various directions is better [17] The flow dispersion is classically 

deduced by dividing the flow between a maximum of two neighbouring 

downstream grid cells [21]. However, the routing scheme used here is 

proportionally partitioned according to the slope angle and such a procedure 
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improves the diffusion of surfaces on each cell (figure 1). The triangular mesh 

gives satisfactory results, particularly in floodplains and thalwegs. 

Simulation outputs 

Graphs obtained at the end of the simulation process show the sum of surfaces at 

interaction and not only the number of cells as a function of distance n from the 

outlet. Steps are not time but rather length-steps because the surface flow diffusion 

depends on the spatial lattice size. So, these graphs give a picture of the 

theoretical spatial behaviour of a given basin in two dimensions and improve 

previous methods. The width-function defined by Shreve (1969) informed on the 

number of links in the network at a flow distance x to the outlet but the graphs 

obtained with RuiCells are not only based on the distance along networks. The 

Link Frequency Distribution or the area-distance-function proposed by Kirkby 

(1976) also not gave the same results because the distribution of pixels covering 

the drainage area was always used [13], while the surface flowing in RuiCells 

follows three deterministic rules (differences between surface, linear or node 

transition) and is based on a triangular lattice. For the same reasons, this 

modelling approach offers more realistic results than those obtained with the area-

distance-function and differs from those using a surface flow travel time 

probability distribution through networks [13] as time is not integrated during the 

CA iterative process. 

A specific index to measure surface flow concentrations 

To quantify the surface flow concentrations at local scales, we propose to divide 

the highest peak of surfaces (Smax) observed on the surface flow graphs by the 

square root of the basin area (A’) located upstream (figure 2). Smax is equal to 

the highest line of cells located at a distance from the outlet and is measured at a 

given iteration (ItMax). We also divide Smax by the square root of upstream in 

following the well- shown relation between discharges and square root of basin 

areas. We multiply the ratio by 100 to render the analysis easier: the value 

obtained for Smax corresponds to a percentage of the average diameter of the 

basin. This index of concentration – IC – enables us to survey the increase of 

basin width with the cumulative distance of surfaces from the outlet and it offers 

a new metric to encapsulate the intensity of flows (figure 2). Values automatically 

calculated during the simulation process are available in each cell and have same 

significance regardless of the basin area if the numerical model never changes. 

The results should be interpreted differently if the resolution evolves. Even if 

indexes do not have a scalar dependence, a numerical model with higher 

resolution naturally gives lower values for the peak of surfaces (Smax) and 

consequently for the IC index. In this study, we always use a DEM of 50 meters 

long. When IC indexes are equal to 50, it indicates a medium surface flow 

concentration; i.e the peak of surfaces equals to the half of the average 

diameter. When IC indexes exceed the value 55 (this arbitrary threshold was 

validated during our first field investigations), networks and surfaces appear 
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really well-structured. Points or linear with IC up to 55 are potential points of 

important concentration of surface flows on a short distance. Next, we investigate 

whether these simulations capture what is occurring in reality and whether they 

should be linked to instances of damage after previous flash flood events on the 

five studied basins. 

 

Figure 2: Calculation of the specific Index of Concentration, uniquely on the point 3 here. 

A case study: potentials of concentration in four basins of small size 

(<25km²) 

Maximum surface flow concentrations emerge mapping the index of 

concentration (IC) in five studied basins. The basin of St-Martin presents high 

value (IC = 56.3) at point 2 as networks and surfaces are well-organized in 

upstream (figure 3). Values greatly increase from points 3 to 2 but gradually 

decrease downstream from point 2: the maximum peak of surfaces never changes 

while upstream area increases. In the basins of Warnette, the same patterns are 

observed (high values and compact forms) but the IC index is not so important 

because areas present a gentle compactness.  

In L’Eaunette, the flow concentration suddenly increases in the main channel due 

to cumulative and constant contributions of the sub-basins into point 2. The basin 

of Aunette presents internal homothetic behaviour [13] due to several 

concentrations measured at the outlet of upstream sub-basins. Values decrease 

between confluences but the flow concentration increases again at points 2 and 3 

and at the final outlet. In these basins, the IC index remains high when the peak of 

surfaces and the average diameter proportionally increase. Concentric organization 

of surfaces in compact form, regular contributions of sub-basins and self-organized 

networks explain high values. On the other hand, elongated shapes, spatial shifted 

contributions of sub- basins and non-hierarchical networks flatten this IC index. 

This result explains why indexes are unrelated to the basin scale and confirms 

that a basin area is convenient for investigating the spatial behaviour of a basin 

in self-similar basins but not in non-self similar areas [22]. 
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Figure 3: Maps of IC obtained on four studied basins in Northern-France. 

Links with instances of damage observed after flash flood events 

Field observations were conducted in the five basins just a few days after flash 

flood events (figure 4). In the basin of Saint-Martin, high IC matched exactly the 

sections where most of the damages were registered after the event of June 

16th, 1997. The section with IC up to 50 [between points 3 to 2, going upstream 

to downstream] presented erosions in the road along a distance of 500 m with an 

average depth ranging from 1 to 2 m. Several cars were dragged resulting in the 

death of 3 people. In this section, high concentrations induced high level of risk 

for urbanized areas: the sudden rising peak occurred in less than 15 minutes, 

taking people outside by surprise. Sediments, stones and roundballers were 

transported up to the final outlet located 2.1 km full downstream. Extensive 

financial costs (3 M €) and losses in human life were finally linked in this section 

to high surface flow concentration which were aggravated by farming upstream 

areas [11]. Other damage was located at the overall outlet, where urbanization 

faced to flood. In the basin of L’Eaunette, inundated areas and damage were also 
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correlated to the simulations. Inhabitants, field measurements and videos confirm 

that the water levels reached 1 m to 2.3 m in the center of Villers-Plouich, where 

gravels, sediments (clay, limestones) and straw deposits in several houses exceed 

50cm. Collective water networks were saturated in the western part of 

Gouzeaucourt, but the sudden peak wave appeared clearly along the road D917 

from the sub-basin Bois Gaucher just after the confluence identified as the first 

upstream point with IC up to 55. 

 

Figure 4: Links with instances of damage on the four studied basins (related to the figure 3). 

The water-treatment plant located near the D917 was also affected, resulting in 

water pollution. Forests downstream tried to reduce the effects of flow 

accumulation, thus flooding decreased where the river joined the town of 

Marcoing (located 3.1 km in the north). The other points with high IC on the 

basin of Aunette sustained less damage. In rare case, as in the basin of 

L’Eaunette (figure 4), high IC exists in grasslands and in uninhabited areas. As 

nobody lives near these sites, correlation between simulation and material losses 

is difficult to evaluate. But in each case study, hydrological problems have been 

observed due to surface flow concentration, particularly along roads which 
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enhance flow velocity. Thus mapping the IC values appears to be a good 

indicator of what is taking place on the ground. Intersecting morphological 

process, numerical simulations and damage due to flash flood offers promising 

prospects. 

Discussion 

Previous reviews have focused on the effects and impacts of morphological 

features on hydrological responses over the past forty years [13, 22, 23]. But 

well-assessing the dynamics and potentials of spatial behaviours remains 

challenge. Traditionally, the width-function or the distance-area function provided 

methods to characterise the catchment response as a function of its 

geomorphologic properties. But these methods present important drawbacks [11]: 

they describe morphological features in a planar dimension and they never 

consider the dynamical impacts of topography on surface flow concentration. 

Some reviews indicated other limitations such as scale dependency [24] or fractal 

properties which can falsify the results of compactness or circulatory indexes 

[25]. In this case, with a CA approach, we propose a new metric to account for 

the interactions between networks, forms and surfaces. Hortonian systems present a 

regular increase of the spatial behaviour and of the surface flow concentration due 

to regular contributions from the tributaries. It clearlyconveys internal homothetic 

behaviours when several high surface concentrations are observed at several 

outlets. In addition, simulations show original patterns such as a decrease of 

surface concentration due to non-hierarchical organisation of networks, or various 

internal efficiencies. Mapping the IC (Index of Concentration) permits to 

calculate and quantify this concentration in all parts of a given basin. In 

summary, this study confirms that more than the basin size, the morphological 

structure and that the spatial organisation of networks determine the distribution of 

surface flow concentration and the potential accuracy of runoff processes. 

Conclusion 

The understanding of flash floods in small and ungauged dry valleys is hampered 

by a lack of hydrological and geomorphological data. The rareness and violence 

of such events do not render the measurement of the role played by the 

topography easy. In this study, we propose to use numerical simulations based 

on the cellular automaton RuiCells as a new metric of measuring dynamics of 

spatial behaviours across scales. 
The Index of Concentration allows measurement and quantification of the dynamic 

effects of morphological components from local (cellular) to global (outlet) scales on 

surface-flow concentrations. Morphological systems defined by the relationship 

between the basin form, network, surface and its distance to the outlet, appear of 

paramount importance compared to basin size. This information has been suggested 

theoretically for a long time but this cellular application can confirm such evidence. 

Some basins such as L’Aunette basin present internal homothetic behaviour but others 

present local concentration which remains hidden if we stay at the global scale (Saint-
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Martin). Using the IC, we detect where the surface flow concentrations can 

suddenly appear and induce damage on houses and/or roads. Validation with real 

losses, local knowledge and field measurements in these five study basins gives 

satisfying results even if damage in some places remain unknown due to the lack of 

people to confirm such observations. In addition, the strong interaction between land-

use cover and topography requires important attention at local scale: high percentage 

of cultivated areas upstream points of concentrations in the Saint-Martin and 

L’Eaunette basins explain violent onsets despite these areas representing a small part 

at the global scale. This work is in progress to identify other basins in which cultivated 

areas are dominant upstream concentration. This work is being carried out in 60 

basins in the Nord-Pas-de-Calais and 180 basins in Seine-Maritime. Our hope is to 

be able to help risk managers to locate areas with high exposure to flash floods to 

plan structural measures to reduce such sensibility to violent hazards. 
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Abstract 

Transition rules form the main and most important component of the cellular 

automata (CA) as they control to a great extent the model behavior and output. 

Contributing to the ongoing effort in the literature, we present in this paper a data 

mining based approach to empirical derivation of CA transition rules. The 

methodology employs the Naïve Bayes (NB) classification to predict future 

generations of the automata and an extended spatial representation of the NB 

nomogram to visualize the classifier and examine intraregional pattern differences. 

The methodology is implemented using free and open source software and libraries, 

and is illustrated in the case of modeling dynamics of an invasive species, namely 

Phragmites australis. The results suggest that the proposed methodology has high 

potential to provide transition rules and capture intraregional differences of the 

process modeled. The extended spatial representation of the classifier nomograms 

gives insight into the classifier and reveals varying patterns of neighborhood 

influence among subareas within the studied site. 

Introduction 

The cellular automata (CA) paradigm has attracted much attention in modeling 

spatial processes in both natural and urban environments [1, 2]. Its clear definition of 

space and time, flexibility for relaxations over the original form, and compatibility 

with the GIS raster format increase its potential and applicability to a number of 

domains.  

Amongst the CA components, the transition rules have a direct and large influence 

on the model behavior [3]. In the original form of CA, transition rules are 

deterministic and based on the states of the cell and its strictly defined neighbors. In 

order to cope with needs of the environmental and urban systems, certain relaxations 

of this form are needed [2] as purely deterministic models may yield inaccurate 

results. These relaxations are needed due to (i) randomness, which is inherent in 

processes in the natural and, to some degree, the urban environments, and (ii) 

uncertainty, which is embedded in our knowledge of those processes. Also, 

transition rules are primarily a function of the neighborhood composition, and for 
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many applications the shape and size of the “influential” neighborhood may vary 

[3]. Finally, in environmental and urban systems, there usually are a number of 

external significant variables that need to be incorporated in the transition rules 

along with the neighborhood composition [4].  

CA transition rules control to a great extent the outcomes of the model. Successful 

modeling depends on the transition rules capturing the essentials of the modeled 

process [3]. This requires understanding of the causalities and mechanisms of the 

process in question. While causal relationships between the process and the external 

factors might be indicated in the literature, the quantification of those relationships is 

not always available [4]. Especially the composition and configuration of the 

neighborhood has to be derived empirically. 

Methods that have been applied to derivation of CA transition rules include multi 

criteria analysis [5], principle component analysis [6], genetic algorithm [7], and 

neural networks [8]. In this paper, we aim to contribute to this effort by examining 

the potential of a data mining method, namely the Naïve Bayes (NB) classification, 

for providing CA transition rules. NB is a widely used classification technique due 

to its simplicity and good performance on a wide range of problems [9]. The 

classification is based on Bayes Theorem and the assumption that input variables are 

conditionally independent given the class variable. 

We present a CA modeling methodology that is based on data mining elicited rules 

and test it on a case study of modeling an invasive species. The main characteristics 

of the developed methodology are the use of NB classification for providing CA 

transition rules, and the visualization method, based on using a nomogram, to give 

insight into the classifier and detect intraregional pattern differences. The 

methodology aims at a generic tool that is applicable in different fields and capable 

of revealing hidden patterns through the strength of spatial data mining techniques 

[10]. The methodology is illustrated in the case study. Finally, we discuss the use of 

free and open source software (FOSS) in the methodology and CA modeling in 

general.  

The methodology 

The methodology employs a NB classifier to mine CA transition rules and predict 

the next generation of the automata. A simple NB classifier is presented in Figure 1; 

the probabilities of an object to belong to each of the possible classes are computed 

by Bayes Theorem given a number of attributes, then the object is assigned to the 

class with the maximum probability.  

The exercise of determining the next generation of CA can be depicted as a NB 

problem; for each run of the CA, we attempt to predict the state (class) of each cell 

(instance) in the next time step (t+1) given the composition and configuration of its 

neighbors as well as a number of auxiliary variables, if any. If we let the cell state in 

the next time step (St+1) be the response or class variable, and the states of its 

neighbors in the current time step and, if applicable, the auxiliary variables be the 

independent variables (or attributes), then we can compose a spatiotemporal NB 

network as shown in Figure 2. In this case, the “class” and “instance” in the data 
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mining jargon are, respectively, equivalent to the “state” and “cell” in the CA, and 

they are used interchangeably throughout this paper. 

 

Figure 1: Naïve Bayes classifier, the simplest form of Bayesian networks 

The spatiotemporal NB network in Figure 2 is an example of a case where a 5x5 

extended Moore neighborhood is adopted. The principle can be applied to any 

neighborhood size, i.e., 3x3, 7x7, 9x9, etc. It is worth noting that cells within the 

neighborhood in Figure 2 are labeled to indicate the ring to which they belong. That 

is, the cell in question is labeled 0, cells adjacent to it (the original eight Moore 

neighbors) are labeled 100 through 107, cells in the one-step outer ring are denoted 

200 through 215, and so forth. This is important for exploring the effect of spatial 

configuration (or allocation) and we use it later to examine and visualize the 

influence (weight) of different cells, within the analyzed neighborhood, on 

predicting the future of the cell in question. This approach allows accounting for the 

configuration of possible states around the cell in question, rather than merely the 

composition, in predicting its state in the next generation. 

A sample set of instances is needed to build a NB classifier. The quality of the 

classifier depends on the representativeness of the sample set. As the classifier deals 

with spatial data, the sample should be spatially stratified, i.e. samples should be 

well spread over the geographic space of the region. The sample should also be 

stratified with respect to the class variable in order to obtain as good priors as 

possible for the NB classification. Finally, should auxiliary variables be 

incorporated, a sample is drawn from their multivariate distribution such that, for 

each variable, the sample is marginally maximally stratified. Minasny and 

McBratney [11] introduced a conditional LHS algorithm (cLHS) that samples 

variables from their multivariate distributions as above mentioned and, in the same 

time, ensures the occurrence of the value combinations in the real world. Their 

Matlab code was ported to Octave for this study. The cLHS function receives a table 

of all instances within the region and returns 10% as a sample. 

Classifiers can be visualized using nomograms to provide a summary of the 

influence of different variables on the classification [12]. Mozina et al. [12] 

introduced a NB nomogram where the variables’ domains are measured upon a scale 

that indicates their contribution to the prediction, with regard to a certain class, as 

point scores. The prediction is then made by summing the scores and finding the 

corresponding probability and, thus, class. For the spatial case of this study, we 

further map the scores of different attributes (states of cells in the neighborhood) 

back to the neighborhood window. That is, for each cell within the neighborhood 

window, the method illustrates the effect of that cell being “live” at time t on the 

probability of the cell in question to be “live” at time t+1. 
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Figure 2: Spatiotemporal NB network; states of cells within the neighborhood window as well 

as the state of the cell in question in the initial time step form the attributes of the classifier that 
aims to predict the class of the cell in question in the next time step (i.e. assign it to one of the 

possible states) 

Implementation of the method 

The algorithm implementing the methodology is presented in Figure 3. First input 

grids and parameters are read in and checked. The potential of the NB classification 

for the problem at hand is tested next. The potential is tested using a 10-fold cross-

validation procedure, where data is split into 10 equally sized subsets each of which 

is used for testing a classifier trained on the remaining subsets. The evaluation result 

(averaged over the ten runs) is reported to the user, who may choose to halt the 

execution of the algorithm if low accuracy is reported. A sample is then drawn from 

the data to build a NB classifier. The algorithm then continues to run the required 

CA generations.  

The model can run in both probabilistic and stochastic modes. In case the 

probabilistic mode is chosen, the classification is obtained directly from the NB 

classifier which assigns an instance to the class that maximizes the posterior 

probability. For the stochastic model, Monte Carlo simulation is run in which the 

next generation is determined by obtaining the probability of each instance to belong 

to class “1” (denoting a live cell) from the classifier, drawing a random number, 

assigning a state according to the drawn number, and moving to the next generation. 

This is done repeatedly for a number of iterations.  

Free and open source software was used in the model development. The model itself 

was written in Python and Numpy was used for numerical computations. Geospatial 

Data Abstraction Library (GDAL) and its Python bindings were used for handling 

input and output of raster grids. Orange Data Mining and Machine Learning Suite 

was used for the data mining part. Orange provides a range of data mining 

techniques, including the Naïve Bayes classification and classifier visualization 

through nomograms [12]. Training samples were obtained by conditional Latin 

Hypercube Sampling implemented in Matlab [11] and ported to Octave. 
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Figure 3: Model flowchart 

Case study and data set 

The developed model is applied on the case of the common reed (Phragmites 

australis) expansion on the Finnish shores. The common reed has taken the Finnish 

shores in many places in the last decades causing habitat changes, influencing a 

number of species, and lowering the value of the impacted coastal and archipelago 

properties [13, 14]. A model capable of predicting future distributions of the reed 

beds is needed for the planning and management of the area.  

Reed coverage maps from Svartbäck (Purola), an approximately 50 km2 site near the 

outlet of River Kymijoki at Ruotsinpyhtää, were available from years 2003 and 2006 

(Figure 4). The area is shallow inner archipelago, with average water depth of 7.5 m. 

The area represents well the Finnish coast with parts of it influenced by a river and 

others far away from any river mouths. The openness of the shores within the area 

varies considerably.  

The model spatial resolution was set to 4 m, which is one-third of the mean diameter 

of the maximum circles inscribed in patches that changed in a three-year-period 
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(2003-2006). The model was initialized with the coverage of 2003 and run for three 

generations (years) to predict the cover of 2006.The model was run stochastically for 

1000 iterations to simulate the reed dynamics in the study area.  

The study area was divided into three subareas (Figure 5) in order to examine the 

potential of the NB classifier and its nomogram to capture particularities of different 

subareas. The model was run for the area as a whole using a classifier trained on 

samples from all parts of it. In order to make comparisons, the model was then run 

separately for each subarea using a classifier trained on a sample from that area. 

Classifiers from the whole area and each subarea were evaluated using 10-fold 

cross-validation. Model outputs using different classifiers were compared by the 

accuracy of the predicted reed map of 2006. The accuracy is given by the proportion 

of cells correctly classified. For our case, the output of the classifier falls within one 

of four groups as shown in Table 1. Denoting reed-occupied cells by “1” and reed-

free cells by “0”, the fraction of cells correctly classified as “1” (i.e. P(Class = 1) 

>= 50%) and the fraction of cells correctly classified as “0” (i.e. P(Class = 1) < 

50%) are, respectively, referred to as the “true positive” and the “true negative” 

rates. The other two proportions in Table 1 are the error rates referring to cells 

assigned to one of the classes while observed otherwise. 

 

Figure 4: Location of study area and its reed coverage in 2003 and 2006 
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Figure 5: Subareas within the study area for which intraregional pattern differences are 

examined 

Results  

The NB classifiers for different subareas are visualized in Figure 6. Figure 6 (a) 

shows the nomograms of each classifier. We can observe different patterns of how 

each attribute influences the probability of the cell in question to be “live” in the 

next time step. Figure 6 (b) presents the relative importance of the attribute mapped 

back to its corresponding location in the neighborhood window. The latter figure 

conveys spatial patterns in the influence. For subarea 1, the influence is as expected, 

that is, the closer the cell the more influential. In the other subareas the effect is 

skewed toward the west and north (subarea 2) and the south and east (subarea 3). 

Table 2 lists the results of the 10-fold cross-validation for the NB classifiers 

obtained for different regions (subareas). The table presents the accuracy of each 

classifier, averaged over the 10 folds. The overall accuracy is above 80%. Classifiers 

are recording higher accuracies when they are region-specific. 

The actual and predicted reed maps of 2006 are shown in Figure 7. The accuracies 

and errors of the predicted map are presented in Table 1. The accuracy was further 

investigated for the two possibilities of state change, i.e. the accuracy of predicting 

cells having the state “1” after being “0” (denoted by “01”), and vice versa 

(denoted by “10”). The model failed to predict any of the “10” cases. For the 

case of “01” the accuracies are listed in Table 3. It can be noticed that, for subarea 

2 and 3, the accuracy is enhanced by applying models with region-specific 

classifiers. 

A stochastic model with 1000 iterations elapsed 9h25m. With a 4 m cell, the raster 

grid of the area consists of 1407 columns and 1390 rows. The neighborhood window 

chosen was 9x9. This results in a table of instance with 81 attributes (plus the class 

attribute) and approximately 2 million instances. The model run time depends 

greatly on the number of cells within the area and, to a lesser degree, the number of 

attributes. The model was run under Ubuntu 11.10 OS in a machine with 16 GB 

RAM and 4 processors at 3.2 GHz each. 
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Figure 6: Visualization of classifiers for each subarea; (a) nomograms reflecting the influence 

of each attribute (cell) on the probability of the class variable (cell state in the next time step) to 
be classified as “1”; and (b) relative influence of the attributes mapped to their spatial positions 

in the neighborhood window, with darker cells being more influential  

 

Table 1: Classifier accuracy and error rates 

 Observed class: “1” Observed class: “0” 

Predicted class: “1” 
True positive 

[0.779] 

False positive (error 1) 

[0.063] 

Predicted class: “0” 
False negative (error 2) 

[0.221] 

True negative 

[0.937] 
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Table 2: Average accuracies of classifiers from different geographic areas 

Area  
10-fold cross-validation 

(averaged) 

Whole study area 0.823 

Subarea 1 0.865 

Subarea 2 0.871 

Subarea 3 0.983 

Table 3: The accuracy of predicting the “01” case using generic versus region-specific 

classifiers for each subarea  

Area  
Model applying 

generic classifier 

Model applying 

site-specific classifier 

Subarea 1 0.572 0.529 

Subarea 2 0.459 0.528 

Subarea 3 0.392 0.454 

 

Figure 7: Actual versus predicted reed coverage of 2006 

Discussion  

The method shows high potential of detecting intraregional differences within the 

study area. The nomograms and their extended spatial representation reveal hidden 

patterns of the process manifestation in different locations. This can enhance our 

knowledge of the phenomenon in question. For our case, the unexpected patterns of 

neighborhood influence in subarea 2 and 3 might be due to region-specific currents, 

sources of nutrients, or other external factors. With further investigation, the causes 

can be verified and incorporated in the model to enhance its predictability. Adopting 

locally trained classifiers yielded higher model accuracy as listed in Table 3. The 

presented method can help overcome the concern of a single set of rules for large 

areas [4] by capturing intraregional pattern differences and adopting region-specific 

rules. The method exploits the available data maximally by analyzing not only the 
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effect of the composition (quantity) of various categories within the neighborhood, 

but also the effect of their configuration (allocation). 

While the overall accuracy of the NB classifiers and the CA model is good, the 

ability of the model to precisely predict the state change cases, namely “01” and 

“10”, is still low. For the case of “01”, the prediction capability of the model, 

which was initially low, was enhanced by adopting region-specific classifiers for 

subareas 2 and 3. This is due to the particularities of those sites revealed by the 

nomogram and the extended spatial representation of the neighborhood influence 

(Figure 6). For region 1, however, the predictability of the generic classifier was 

higher. This might be due to the large area of region 1 which accounts for 70% of 

the whole study area. Although specific for their own regions, instances from region 

2 and 3 are generally in line with those from region 1, and therefore incorporating 

them in building the classifier increases the training sample size and, consequently, 

enhances the classifier’s performance. 

The model failed to detect the “10” case altogether. The reason can be the fact that 

the expansion of reeds, rather than disappearance, was the dominant trend between 

2003 and 2006, accounting for two-thirds of the state change cases. This can be 

solved by training separate classifiers for the expansion (i.e. “01”) and 

disappearance (i.e. “10”) cases. Another cause can be that the disappearance of 

reeds is mainly occurring next to the shoreline and is probably due to manual 

removal. While the CA neighborhood effect reflects on the reed expansion 

mechanism (which proliferate mainly by rhizomes), it cannot predict results of 

human intervention such as the manual removal. 

The performance of the model can be considerably enhanced by incorporating 

auxiliary variables, explanatory to the phenomenon, in the classifier or in posterior 

steps. For the case of reed expansion, those might include the water depth, the 

sediment type, the nutrient load, and the relative sea openness. The neighborhood 

influence in many spatial processes, although highly influential, cannot solely 

explain the process. However, auxiliary variables were not incorporated since the 

purpose of this work was to examine the potential of data mining techniques to 

provide CA transition rules, with no emphases on the case study. From this 

perspective, having reached accuracy over 50% by analyzing merely two maps of 

reed coverage from different years suggests that the proposed methodology is 

capable of capturing patterns of the process modeled and providing CA rules that 

are, when necessary, region-specific. 

Both probabilistic and stochastic modes are implemented in the algorithm. The NB 

classifier is acknowledged for its high performance in predicting the class of an 

instance [15, 16]. Running the model in a probabilistic mode, thus, exploits the 

strong feature of the NB classifier, while running a stochastic model allows 

indicating the uncertainty of the prediction by the probability distributions from 

different iterations. 

Running a stochastic model with 1000 iterations elapsed about 10 hours. A 

probabilistic model elapses less than 10 minutes. Taking into account the heavy 

computational load, the model execution is rather fast. For each iteration, arrays of 

cells’ and their neighbors’ states are stacked. The number of arrays stacked grows 

exponentially as the neighborhood size grows; choosing a 9x9 neighborhood 
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window, for instance, results in a stack of 81 arrays. These arrays are then 

transposed and flattened to obtain a table of instances readable by the classifier. The 

effective masking and indexing functions of Numpy help optimizing the model by 

keeping track of unmasked cells, often faced when modeling natural and urban 

processes. This makes it possible to avoid classifying irrelevant instances and, in the 

same time, maintain the spatial position of instances, thus increasing the model 

efficiency.  

The use of FOSS and libraries allows the code modification and reuse by other 

researchers for other applications. The ability to set different sizes of cells and 

neighborhood windows and the ability to incorporate any number or combination of 

variables gives flexibility to the model. Combined with the algorithm efficiency, this 

helps initializing multiple models with different settings and variables for the 

purpose of finding the appropriate choice of parameters for the process being 

modeled. 

Further elaboration on a number of aspects would enhance the methodology and the 

algorithm. This includes testing the methodology for multi categorical applications, 

building classifiers for each transition case, adding posterior refinement steps 

(application dependent), and implementing automatic detection and handling of 

intraregional differences in the process patterns. 
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Abstract 

This paper has two objectives. The first one is to examine the performance of a set 

of spatial models built to define functional urban regions. More specifically, the 

models are tested using recent census data. In the second objective, an extension of 

the modeling approach is tested. Instead of predicting density values to later classify 

them in quadrants of the Moran’s scatterplot, the new models directly predict the 

quadrants. This new approach seems to perform better. In summary, the findings 

obtained with this study suggest or even confirm the value of spatial analysis 

techniques as a promising approach to define and monitor FURs. This comes along 

especially as an alternative approach where more specific data is not available, but 

usually easily accessible census data may be used for that end. 

Introduction 

Large urbanized areas formed by several municipalities bring particular challenges 

to urban managers and planners. On the one hand, the administrative limits of those 

conurbations go well beyond the limits of the individual cities that form them. On 

the other hand, they are often not large enough to match the boundaries of the 

superior administrative subdivisions, i.e., states or provinces. Therefore, one of the 

alternatives to deal with that administrative problem is the definition of the so-called 

Metropolitan Regions (MRs), or Functional Urban Regions (FURs). Several 

methods have been developed to define FURs. But given the inherent complexity of 

the concept, it is not always an easy task (for a recent literature review on this topic, 

see [1] and [2]). 

In short, one of the methods for defining FURs is based on commuting flows 

between regions, as observed in Europe [3] and in the United States [4]. Some 

authors, however, argue that the commuting intensity itself is not able to show the 
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degree of economic integration between a metropolitan center and its hinterland 

(e.g., [5] to [9]). 

The lack of proper data is an issue regarding the application of commuting flows-

based methods. Some alternative approaches have been presented for proxying 

commuting data, as suggested by Coombes [10], but they still rely on data that are 

usually unavailable in developing countries, such as the distribution of jobs. 

However, the author also lists feasible alternatives, such as using roads or service 

networks like bus services as a proxy for data on actual patterns of interaction. 

In any case, these approaches may still not be viable regarding the need for specific 

data. Therefore, the authors of the Office of Management and Budget [11] defended 

another alternative for defining metropolitan areas based on population density 

values, since it is expected to be available in most census datasets. The authors 

stated that "residential population density can serve as a surrogate for other measures 

of activity in the absence of nationally consistent and reliable datasets describing all 

daily and weekly movements of individuals". 

The use of population density for defining FURs can be analyzed in many different 

ways, though. This was shown by Ramos and Rodrigues da Silva [12] and [13], 

Ramos et al. [14] and Manzato et al. [15], who have explored the use of the attribute 

with spatial analyses tools, such as spatial statistics and spatial modeling. More 

specifically, the spatial statistics concepts used Exploratory Spatial Data Analysis 

(ESDA) techniques [16], and the spatial modeling was based on principles of 

Cellular Automata - CA (e.g., [17] to [22]). Also, Pereira and Rodrigues da Silva 

[23] investigated another technique based on cluster analysis. 

While those applications of spatial analyses using population density led to 

interesting and promising results for the definition of FURs, Manzato and Rodrigues 

da Silva [1] extended the approach with the inclusion of an infrastructure supply 

index. Their assumption claimed that in the absence of traffic flow data as one of the 

possible methods to define FURs, a proxy measure that quantifies the level of 

transportation infrastructure supply might relatively well replicate the actual traffic 

flows. Thus, the definition of FURs could eventually rely on the level of 

transportation infrastructure supply or, alternatively, on indexes that represent the 

supply level in each municipality. The findings obtained by these authors and later 

on by Rodrigues da Silva et al. [2] suggested that the use of a transportation 

infrastructure supply index combined with population density within a spatial 

analysis-based approach is a promising alternative to define FURs. 

Given the above, the objective of this study is twofold. First, with the recent 

availability of the demographic census carried out in 2010, we tested the models 

developed by Manzato and Rodrigues da Silva [1] in the sense of validating them 

with new data. Second, we also explore an extension of their models, considering a 

simpler model specification. It consists of using essentially the same model 

structures proposed before by these authors, but taking into account as model 

attributes only the quadrants of the Moran’s scatterplot obtained for both population 

density and the index of infrastructure supply. 

This paper is structured as follows. Next section presents the methodology proposed, 

followed by the results obtained. At the end, some concluding remarks are drawn 

and the bibliographic references are listed. 
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Methodology 

The present study followed the methodology proposed by Manzato and Rodrigues 

da Silva [1]. They built spatial models to define FURs using ESDA techniques along 

with principles of CA. In the case of ESDA, zones are classified regarding a given 

attribute value in relation to the overall average value and also in relation to the 

average value of the adjacent zones. The results, which can be represented in four 

quadrants of the Moran’s scatterplot and also in maps (the so-called Box Maps), can 

be classified as follows: 

1. High-High (HH): in that quadrant are represented the zones with positive value 

for the zone and positive average value for contiguous neighbors. Positive values 

are always above the overall average value. 

2. Low-Low (LL): in that quadrant are represented the zones with negative value 

for the zone and negative average value for contiguous neighbors. Negative 

values are always below the overall average value. 

3. Low-High (LH): in that quadrant are represented the zones with negative value 

for the zone and positive average value for contiguous neighbors. 

4. High-Low (HL): in that quadrant are represented the zones with positive value 

for the zone and negative average value for contiguous neighbors. 

Two basic attributes were used: population density and an index of infrastructure 

supply, as shown in Equation 1. This index refers to an area under the influence of a 

particular transportation system (in this case, the highway network) and it is 

composed by weighted buffers around that system. 

x

n

i

x
A

Ai
IC

 
 1

)(

  (1) 

where: 

xIC  index of infrastructure supply coverage for zone x 

)(i  function that determines the weight of each buffer, such as  1,0)(  i  

iA  area of each buffer comprised in a zone x 

xA  area of zone x 

n number of buffers. 

 

Zone x mentioned here is related to the municipality’s official administrative 

boundaries, which comprise our units of observation and where such attributes were 

calculated at. The quadrants of Moran’s scatterplot were also obtained for both 

population density (PDx) and the index of infrastructure supply (ICx), respectively 

referred to as QPDx and QICx. Along with these four attributes, given this CA-based 

spatial modeling approach, additional attributes were included. They comprised the 

average value of the population density in adjacent municipalities (PDj) and the 
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number of adjacent municipalities in each quadrant of the Moran’s scatterplot 

obtained for PDx (e.g., nHHx,PD, nLLx,PD, nLHx,PD, and nHLx,PD). We have adopted a 

binary measure of adjacency (neighbor / not neighbor). In sum, nine attributes are 

defined for such spatial models. 

Following Manzato and Rodrigues da Silva [1], two basic model structures were 

applied. The first is called “3 IN 1 OUT”, where input data reflect three periods of 

time, apart “x” years from one another, and the output data is one time-step later. For 

example, if the output data is “t”, and “x” is equal to ten years, the input data must 

be “t – 30”, “t – 20” and “t – 10” years. The second model structure is called 

“T, T + 10”. Although it apparently has only one period of time for the input data 

and another one for the output, this structure was constructed in such a way that the 

information about two or more periods of time is also considered in the model. The 

data from distinct periods of time are placed on the top of each other, as if they were 

in the same column of a spreadsheet. Thus, if the first model structure has “w” 

entries (or municipalities, in our case), the second model structure has “3 x w” 

entries. In other words, the second kind of model has more cases in the dataset. On 

the other hand, it ignores long-term effects that can only be captured if the same 

entry is seen in several time steps at once, as it is the case of the first structure. 

Figure 1 exemplifies the model structures described above. 

 

Figure 1: Overview of the proposed model structures 

Considering both model structures along with the attributes defined, Manzato and 

Rodrigues da Silva [1] built a set of four models divided into two groups. We can 

observe that population density is the basic element among the several attributes 

used to represent land-use. Therefore, a first group of models only took into account 

these attributes. Table 1 specifies the model structure and the attributes included in 

this group. As the interest was also in the influence of the transport infrastructure 

supply on such modeling phenomenon, a second group of models included the index 

of infrastructure supply (ICx), as a way to capture some effects of the transportation-

land use relationship on the occupation of the territory along time. The index was 

not, however, included using the respective values across the years analyzed. 
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Instead, a variation across time steps was considered. For example, in the model 

structure “3 IN 1 OUT”, a difference between periods “t – 10” and “t – 30” was 

calculated. For the model structure “T, T + 10” on the other hand, the difference 

regarded two consecutive years across the respective pairs of periods analyzed. In 

any case, that variation of the index was normalized between 0.1 and 0.9 to avoid 

null or extremely high values, what could produce some inconsistencies during the 

simulations. A summary of the proposed models, with the distinct structures and 

attributes, is presented in Table 1. 

Table 1: Structures and variables used in the distinct models proposed 

Model Structure Basic attributes Input attributes Output attribute 

1 3 IN 1 OUT Population 
density 

PDx; QPDx; PDj; 

nHHx,PD; nLLx,PD; 

nLHx,PD; nHLx,PD 

PDx 
2 T, T+10 

3 3 IN 1 OUT Population density 

+ 

Infrastructure supply 

PDx; QPDx; PDj; 

nHHx,PD; nLLx,PD; 

nLHx,PD; nHLx,PD; ICx 

PDx 
4 T, T+10 

 

The data used to calculate those attributes were obtained essentially from two 

sources: the demographic censuses carried out by the Brazilian Institute of 

Geography and Statistics, and the State Highway Department. The former provided 

initially the population data in the years 1960, 1970, 1980, 1991 (here considered as 

1990), and 2000. This same source also provided a vector geographic database with 

the municipalities’ boundaries. The latter provided maps of the state highway 

network for the years 1960, 1970, 1980, 1990, and 2000.  

Given the data available when Manzato and Rodrigues da Silva [1] carried out their 

study, the spatial modeling process comprised three phases: calibration, validation 

and forecasting. First, in the calibration phase, they used the 1960, 1970, 1980, and 

1990 datasets. In doing so, they obtained the weights and the mathematical functions 

of the artificial neural networks used to compose the spatial models. In the second 

phase, they applied the 1970, 1980, 1990, and 2000 datasets for the validation of 

these models, comparing the predicted results with the real values. These two phases 

are essential in the modeling process. It is also important to pay attention to the 

periods taken into account in both phases, as the year 2000 is not considered in the 

calibration phase because it will be used in the validation phase to test the models. 

Conversely, producing estimates for periods before the year 1990 would not produce 

significant results, because such periods were used as outputs for calibrating the 

models. 

The results of the third phase, when the authors forecasted values for a future time 

step, are of specific interest in this study. In that stage, Manzato and Rodrigues da 

Silva [1] extended their analyses for estimating values for the year 2010, using the 

1980, 1990, and 2000 datasets as input data. Recently, the results of the 2010 

demographic census became available [24]. Therefore, using essentially the same 

models developed before, the estimates of the forecasting phase for 2010 could now 

be tested with the observed data for the same year. This allowed another evaluation 

of the set of models proposed. 
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Notwithstanding this model validation, an extension in the set of models was also 

tested. These additional models follow the same structures described before (i.e., 

“3 IN 1 OUT” and “T, T + 10”), but the difference regards the attributes considered 

as inputs and the output. More specifically, these models are built only using the 

quadrants of the Moran’s scatterplot obtained for both population density and the 

index of infrastructure supply as inputs, e.g., respectively, QPDx and QICx. The 

output is the quadrants of the Moran’s scatterplot for population density (QPDx). 

Table 2 summarizes the specification of these additional models. 

Table 2: Specification of the additional models proposed 

Model Structure Basic attribute Input attributes Output attribute 

5 3 IN 1 OUT 
QUADRANTS 

Population density 

+ 
Infrastructure supply 

QPDx; QICx QPDx 

6 T, T+10 

Results 

The results of models 1 to 6 are presented in Table 3, which shows the partial and 

total percentages of correct quadrant estimations. This measure is given by the 

comparison of the observed values in 2010 with the values estimated by the models 

in the same year. It is important to emphasize that models 1 to 4 estimate population 

densities and models 5 and 6 directly estimate the quadrants. Therefore, the 

population densities estimated with models 1 to 4 were subsequently classified in 

quadrants so that the results became comparable. 

Considering models 1 and 2, which have earlier population density values as the 

basic input attribute, the performance of model 2 appears to be better than model 1. 

This can be observed by the total percentage of correct quadrant estimations, which 

is equal to 93 %. The partial results are also higher for model 2, except in quadrant 

LH. However, given the significant difference in quadrants LL and HL, and in the 

totals, model 2 performs better. 

Analyzing models 3 and 4, which include the index of transportation infrastructure 

supply, their performances seem to be better than models 1 and 2. The additional 

attribute indeed contributes to the improvement of the models and this is in line with 

the original findings obtained by Manzato and Rodrigues da Silva [1]. In a direct 

comparison of models 3 and 4, although the totals are the same, model 4 has a 

higher percentage of partial correct estimations in quadrants HH, LH and HL. 

Therefore, this model seems to be better than model 3. 

Looking at the results for models 5 and 6, which are the additional models proposed 

here, their performances were even better than the previous models. This is 

especially the case of model 6, which results in the highest percentages of correct 

quadrant estimations. 

Despite the above, it is important to evaluate these findings in terms of the 

distribution of the errors produced by such model estimations. To this end, we 

selected the models that performed better within their specifications. That is, the best 

models between 1 and 2, 3 and 4, and 5 and 6, respectively. From the above, models 
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2, 4, and 6 had the best performances. Noticeably, they all follow a “T, T + 10” 

structure. 

Considering the models that estimate population density (i.e., models 2 and 4), 

Map 1 shows the representation of the population density over the territory for 

observed and estimated values. It is important to emphasize that Map 1 presents the 

actual values of population density (both observed and estimated) and not the 

quadrants. Model 2 is able to provide good estimates within the official metropolitan 

regions (shown by the areas delimited by a white line), but produces errors outside 

those regions. On the other hand, model 4 provides good estimates outside the 

official metropolitan regions, but does not perform well within those regions. 

Table 3: Partial and total results of the percentages of 

correct quadrant estimations in 2010 for models 1 to 6 

Model HH LL LH HL Total 

1 91 % 86 % 88 % 75% 87 % 

2 91 % 95 % 71 % 94 % 93 % 

3 85 % 99 % 71 % 69 % 96 % 

4 91 % 97 % 92 % 75 % 96 % 

5 90 % 99 % 79 % 88 % 97 % 

6 91 % 99 % 96 % 88 % 98 % 

 

Also, the results of these models can be represented in terms of the quadrants, as 

shown in Maps 2 and 3. A visual and direct comparison can be made by looking at 

the two smaller figures on the top of Maps 2 and 3. However, most importantly, we 

are interested in the distribution of the errors. To this end, we classified the 

municipalities whose resulting quadrants obtained from the estimated population 

density deviated from the quadrants obtained from the observed population density 

values. The legends elaborated for Maps 2, 3 and 4 show the observed occurrences 

“should be” in contrast with what the estimated occurrences “became”. When we 

analyze the distribution of such occurrences over the territory, it became evident that 

model 4 produces fewer errors in comparison to model 2. 

Finally, Map 4 presents the distribution of the errors produced by model 6. It was 

argued before that the results of this model were the best, given by the comparison 

of the percentages of correct quadrant estimations. When looking at the distribution 

of the errors over the territory, this model produces even fewer incorrect estimates in 

comparison to both models 2 and 4. 
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Map 1: Observed and estimated values of population density in 2010 



Ajaukas et al., The definition of functional urban regions 

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 99 

 

Map 2: Quadrants of observed and estimated values of population density in 2010 and 
distribution of incorrect quadrant predictions resulting from the application of model 2 
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Map 3: Quadrants of observed and estimated values of population density in 2010 and 
distribution of incorrect quadrant predictions resulting from the application of model 4 
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Map 4: Quadrants of observed and estimated values of population density in 2010 and 
distribution of incorrect quadrant predictions resulting from the application of model 6 

Conclusions 

This paper had two objectives. The first one was to examine the performance of a set 

of spatial models built to define functional urban regions. More specifically, the 

models developed by Manzato and Rodrigues da Silva [1] were tested using recent 

census data. In the second objective, an extension of the modeling approach was 

tested. Instead of predicting density values to later classify them in quadrants of the 

Moran’s scatterplot, the new models directly predict the quadrants. The main 

findings of this study are summarized hereafter. 

First, considering a model structure where the population density is estimated, the 

analysis suggests that models 2 and 4 have the best performances, although they 

provide different results. Model 2 has similar density distributions when compared 
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to the actual data (i.e., in 2010) in the official metropolitan regions. However, 

outside those regions, several density values are not correctly classified using model 

2. On the other hand, the predictions of model 4 are not good within and close to the 

official metropolitan regions, but the model performs better than model 2 in the rest 

of the state. 

Second, when looking at the results provided by the original models in terms of 

quadrants of the Moran’s scatterplot, the performances of models 2 and 4 are 

significantly improved (Maps 2 and 3). In this particular case, model 4 performs 

better than model 2. In both cases, however, most incorrect predictions are located 

around the official metropolitan regions. 

Finally, when analyzing the performance of the additional models that were based 

only on the quadrants of the Moran’s scatterplot, the findings suggest that these 

models (5 and 6) perform better than the previous ones (models 1 to 4). This was 

shown in the example of model 6 (see Map 4 and Table 3). While model 4 provides 

correct estimates for 96 % of the cases (municipalities), model 6 predicts 98 % of 

the total number of cases as correct. In addition, model 6 provides much more 

uniform predictions within the quadrants. Remarkably, all those advantages come 

along with a simpler model structure. 

In summary, the findings obtained with this study suggest or even may confirm the 

value of spatial analysis techniques as a promising approach to define and monitor 

FURs. This comes along especially as an alternative approach where more specific 

data is not available, but usually easily accessible census data may be used for that 

end. 
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Abstract 

The model structure of a land use change Cellular Automaton (CA), i.e. its set 

of transition rules, is often identified rather arbitrarily. We propose a more 

objective approach that selects the model structure from a set of candidate structures 

using observational d a t a  o f  l an d  u s e . This is done in a B ayesian framework 

that sequentially assimilates observational data into the CA, where the model 

structure is defined as a probability distribution of transition rules. The advantage of 

the approach is that it combines expert knowledge and observational data in 

identifying the transition rules, taking into account the uncertainty in the 

observational data. The approach is evaluated in a case study of a land use change 

model simulating bioenergy cropland expansion in Brazil. 

Introduction 

Land use change models simulate dynamic processes and interactions that are 

complex and are rarely fully understood [1]. Most land use change models, apart 

from agent based models, are grounded on some form of constrained Cellular 

Automaton (CA). A constrained CA can be defined as a discrete cell space with a set 

of potential cell states and a set of transition rules that control the state of each cell 

constrained by the number of cells required for each land use type (the demand) [2]. 

A wide range of individual theories exists to describe the land use system, which 

gives rise to a variety of transition rules being used [3]. 

The model structure of a land use change CA, i.e. the set of transition rules, is often 

identified somewhat arbitrarily, mainly using expert knowledge [4, 5]. In other 

cases, extensions of standard statistical methods are used, usually some type of 

regression on a land use map for a single time step, separate from the model 

itself [6-8]. This comes with the perils of finding rules valid for only a particular 

point in time, missing feedback effects, or detecting only a single effective 

combination of rules, while various ones exist. Therefore, such methods are not 

mailto:J.A.Verstegen@uu.nl
mailto:d.karssenberg@uu.nl
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oriented towards complexity [9]. Some use more complexity-oriented methods to 

identify model structure, like neural networks [10, 11], Bayesian networks [12], and 

particle swarm optimization [13]. A problem with all these approaches is, 

however, that they do not take into account observation uncertainty [14]. 

In addition to model structure identification, i.e. defining which processes should be 

included, model calibration, i.e. parameterization of these processes, is required. 

Yet, calibration could be considered pointless if the model structure is incorrect. To 

overcome this problem, we propose a method to simultaneously identify model 

structure and calibrate parameters of a land use change model using observational 

data. 

Key requirements are to: 1) include prior knowledge about the model structure and 

parameters; 2) use a sound statistical framework that is capable of reconciling model 

uncertainty and observation uncertainty; 3) be able to utilize observations not 

only of the cell state (land use), but also of other variables or derived spatial pattern 

characteristics, e.g. patch size, zonal summary statistics, or connectivity, because 

these help to identify the underlying processes [15]; and 4) integrate model running 

and model structure identification to take into account temporal effects. 

Data assimilation techniques have the potential to fulfil these requirements, because 

they sequentially update the model rules and parameters at time steps when 

observations are available. Most of these techniques rely on Bayes’ theorem and 

thus have a sound statistical basis. They are increasingly being used to 

calibrate spatio-temporal models in a wide range of different fields in the 

environmental sciences, such as oceanography [16], hydrology [17], and 

atmospheric transport [18], but have, to our knowledge, not yet been applied for 

model structure identification and are new in the land use change field [19, 20]. 

Here, the potential of data assimilation for model structure identification and 

calibration of a land use change CA is evaluated by means of a case study of 

modelling the expansion of sugar cane fields in the São Paulo state in Brazil. This 

is relevant in view of the current debate on the sustainability of bioenergy from 

dedicated crops when land usechange is taken into account [21, 22]. 

A brief explanation of data assimilation is provided in the next section. The 

subsequent section outlines the case study setting, model set up with potential 

structures (prior information) and the observational data. This is followed by 

preliminary results and a discussion and conclusion section. 

General framework  

A CA, with the state variable(s) zt and initial state z0, can be defined as: 

 

In equation 1, ft is the set of transition rules at time step t that simulates the system 

of, in this case, land use change. The vector i t  represents all inputs and 

boundary conditions and p t  contains the parameters. In a stochastic model, the 

uncertain parts of the system are described stochastically. So, ft is a probability 

distribution of possible transition rules and it and pt the probability distributions of 
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the inputs, boundary conditions and parameters. Together, they determine shape of 

the resulting probability distribution of the state variable, referred to as p(zt). 

Bayes’ rule to updates a probability distribution of a variable, when evidence, i.e. an 

observation, of this variable arrives. So, for the time steps at which observational 

data are available the following equation is evaluated. 

 

In equation 2, p(ot) is the probability distribution of the observations, accordingly 

taking into account the uncertainty in these observations. p(ot|zt) is the joint 

probability density of the observations at t given the model state, which can be seen 

as the likelihood that the observations occur given the model. The posterior 

probability p(zt|ot) is the probability distribution of the state variable zt adjusted to 

the obseravtions. 
Numerically, equation 1 is often solved using Monte Carlo analysis, which 

represents probability distributions by a number of realizations. A numerical 

solution of equation 2 is the particle filter, a data assimilation technique that 

filters these realizations, also called particles, sequentially. At each time step for 

which observational data are available it uses Bayes’ theorem to assess the 

probability that a certain particle and the observed data can be considered equal 

[23]. Herein, the following steps are taken: 
 

1. A number of N realizations are drawn from the initial probability distributions 

of transition rules, inputs, boundary conditions and parameters, resulting in a 

total number of N particles. 

2. For all N particles the land use change model is run up to the next observation 

moment, i.e. the next moment for which observational data are available. 

3. The posterior probability, also called weight, that the modelled state at that 

moment is correct, given the observations with their uncertainty, is calculated for 

each of the particles. 

4. Using these weights, N particles are drawn to be progressed to the next 

observation moment. This procedure causes particles with a high weight to be 

copied (drawn several times) and particles with a low weight to be removed (never 

drawn). 

5. Steps 2 to 4 are repeated until all filter moments are completed and the model 

has reached the final time step. 

 

Steps 1 and 2 involve the Monte Carlo simulation, step 3 is achieved by solving 

Bayes’ theorem sequentially: 

 

In equation 3, p(  
 ) is the prior probability of model realization i, which is 

alwaysequal to 1/N because the same number of particles is drawn after each filter 

moment (step 4). If the observations are not of the state variable, but of a derived 
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summary statistic, for example relative proportions of land use in a subarea like 

sometimes found in census data, the model state has to be converted to that 

measure before filtering. In equation 3, p(  
 |ot)is the posterior probability or 

weight of particle i and p(ot|  
 ) is the probability of the observations given 

particle i. Under the assumption that the observation error has a Gaussian 

distribution, the latter can be defined as: 

 

In equation 4, Rt is the covariance matrix of the observation error and T indicates 

matrix transposition. 

Going through steps 1 to 5 the procedure ‘filters’ because many particles do not 

match the observations, receive low weights, and are thus not drawn and not 

progressed to the next observation moment. So, although the number of particles 

remains the same, the variation in the particles in terms of their uniqueness in the 

transition rules and values for inputs, boundary conditions and parameters 

diminishes. This means that the initial probability distributions of these model 

components are narrowed. Hence, the particle filter has identified which transition 

rules are most likely to be valid (model structure), in what ranges the inputs, 

boundary conditions and parameters are most likely to fall and the model has 

thereby been calibrated automatically. 

Case study 

A simple case study is defined to test the usability of the particle filter for model 

structure identification and calibration of a land use change CA. An important 

current debate in the land use change domain is whether bioenergy from dedicated 

crops is still sustainable when land use change is taken into account, in view of e.g., 

carbon emissions [21, 24, 25], rising food prices [26], and biodiversity [27]. For all 

these aspects it is important to know where bioenergy crops have expanded and will 

expand in the future. Such forecasts can be made with a land use change CA. 

A key player in the bioenergy market is Brazil, mainly with the production of 

ethanol from sugar cane. Within Brazil, the state of São Paulo has the longest history 

as well as the largest share (about 60% of the national production in recent years) 

and still a significant growth in sugar cane production [28, 29]. The actuality of the 

debate, together with availability of an annual spatial dataset of sugarcane 

distribution from the National Institute for Space Research in Brazil (INPE) [30] 

as observational data, makes sugar cane cropland expansion in the São Paulo 

state a suitable case for testing the usability of the particle filter for model structure 

identification and calibration. 

Model components from the PCRaster Land Use Change model (PLUC) [5, 31] are 

used to create the set of candidate transition rules (probability distribution of in 

equation 1). The land use change is steered by the demand for products associated 

with the land use types, in this case sugar cane. The two most important components 

of the transition rules are the suitability factors, which determine preferred location 

of the expansion or contraction, and the allocation mechanism, which determines the 
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degree of competition between land use types. The allocation mechanism is less 

important when considering only one land use type, because no competition is 

involved. So only the suitability factors and their parameters are sampled from a 

probability distribution. Total suitability for a land use type at time step t can be 

defined as: 

 

In equation 5, uk,t   [0,1] is the suitability considering factor k, with k = 1, 2, …, K 

and wk   [0,1] is the weight of factor k. In the data assimilation, the model structure 

is defined by updating the distributions of wk for all suitability factors. Some weights 

will converge to zero, indicating that the processes, which the associated suitability 

factors embody, are irrelevant in the observed system. The candidate factors and a 

short explanation of the processes they represent are listed in Table 1. 

Table 1: Candidate suitability factors for sugar cane in São Paulo 

 

For the Monte Carlo simulation and particle filtering the PCRaster Pyhton 

framework [32] is connected to the PLUC components. The observational data are 6 

annual maps of sugar cane occurrence, classified from Landsat images by INPE for 

the Canasat project [30], with a resolution of 30 meters and a temporal extent 

from 2003 to 2010 (a period of strong growth [33], stimulated by the introduction of 

the flex-fuel vehicles). The data are resampled to a 1 kilometre resolution to align 

with input data and projected to the Albers Equal Area projection to preserve 

correctness of area, an important metric property in the model. In order to reduce run 

time and to show that not only observations of state variables can be used as 

observational data, but also derived summary statistics, the percentage of sugar 

cane coverage in 100 x 100 km blocks is used as observational data. 

Preliminary results 

The model is run for 50 realizations, once without and once with particle filtering in 

time steps 2 to 7 (2004 to 2009) using the percentage of sugar cane coverage in 100 

x 100 km blocks as observational data. The evolution of the model structure can be 

illustrated by the evolution of the weights of the six candidate suitability factors over 

time (Figure 1). All factors start with a weight distribution that comprises all values 

between zero and one. Over time, some particles are filtered out and others are 

copied. Therefore the distributions converge, e.g., distance to sugar cane mills seems 

Suitability factor Process represented 

Sugar cane in neighbourhood Economies of scale 

Distance to water Water availability for growth 

Distance to São Paulo over roads Transportation costs to the main market 

Potential yield Profits 

Slope Mechanization potential, erosion 

Distance to sugar cane mills Transportation costs to processing unit 

 



Verstegen and Karssenberg, Identifying transition rules in a cellular automaton 

110 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 

to be important as it’s weight converges to 0.7. Some factors’ weights converge to 

zero, which means the processes are irrelevant, at least with their drawn 

parameterizations, and therefore excluded from the model structure. But, 50 

realizations are insufficient to search the complete rule and parameter space. A run 

with more particles will probably yield different results. 

 

Figure 1: Evolution of the weights of the candidate suitability factors over time in the ensemble 

of 50 particles. Time step 1 is 2003 and the increment is annual. 

To illustrate the effect on the state variable, the resulting probability that sugar cane 

is present in a cell in a certain year is shown in Figure 2. A value 1 indicates that a 

cell is certainly occupied by sugar cane, i.e. it was sugar cane in all realizations, a 

value 0 that it is certainly unoccupied, i.e. it was sugar cane in none of the 

realizations, and any value in between indicates uncertainty in presence. In 2005, the 

third time step, the model results with filtering and without filtering (Monte Carlo 

only) show little difference, as only one filter moment has passed. In 2009, however, 

the maps with filtering exhibit much less uncertainty, i.e. more cells that have either 

the value 0 or the value 1. This is because particles in which sugar cane was 

allocated in wrong locations have been filtered out. As a result, the large areas that 

remain free of sugar cane coverage, for example in the South-eastern corner and the 

circular patch in the centre, are predicted much better by the model with the particle 

filter than by the model without filtering, in which almost all cells in São Paulo have 

an equal probability to be covered by sugar cane in 2009. 

Nonetheless, the 2009 map with filtering still does not match the observations fully. 

This can have several reasons. An important one is that the percentage of sugar cane 

coverage in 100 x 100 km blocks was used as observational data, meaning that the 

model is only required to match the amount of sugar cane in a block, independent of 
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the arrangement within this block. The sugar cane is now clustered too much by the 

model. Including for example average patch size as an observation might solve this. 

Secondly, as stated before, not enough realizations were used to search the complete 

parameter space. Furthermore, it is possible that not all relevant processes were 

included in the set of candidate rules, so that the model will never be able to 

replicate the observations. 

 

Figure 2: The probability that sugar cane is cultivated in the Monte Carlo run without (top) and 

with (middle) filtering, and the observations (without uncertainty) (bottom), for 2005 (left) 
and2009 (right). 

Discussion and conclusion 

The particle filter has the potential to simultaneously identify model structure and 

calibrate parameters of a land use change CA. We have shown how it can combine 

prior information and observations, taking into account uncertainty in these 

observations. The observations can correspond to the state variable or a derived 

pattern characteristic, so that the absence of good quality land use maps is less of a 

problem. The approach of integrated model structure identification and model 

running allows to account for temporal patterns, such as feedback effects, important 

in complex systems [9]. 
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Further research should be done using more particles to be able to represent the full 

range of possible transition rule and parameter combinations. In addition, more 

spatial pattern characteristics should be exploited in the filter, to better capture the 

underlying processes [15] and thus improve the forecasting capabilities of the 

model. Validation is needed to proof whether the proposed method results in 

improved land use change predictions. 
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Abstract 

Since the 1960s, an increasing number of studies have focused on investigating the 

determinants of urban residential location choices. Despite the valuable contribution 

of these pioneer studies to the development of urban and spatial economics, many 

researchers have doubted its applicability to the real world, criticizing some of its 

simplified assumptions and, most important, the underlying idea that the 

spontaneous action of market forces promotes higher levels of consumer satisfaction 

and efficiency of resource use. 

Contributing to this debate, this paper presents a spatially-explicit simulation model 

built to explore an alternative perspective to the one provided by neoclassical 

models of urban economics. This perspective is based on the theoretical framework 

proposed by the economist Pedro Abramo in his book "The Kaleidoscopic City", 

which relies on the heterodox economic literature to develop a new interpretation of 

how residential choices are made. In this paper, we present simulation experiments 

that explore the role of entrepreneurs’ actions in influencing the residential location 

choice of families and the emergence of different global and local residential 

patterns in the city. 

Introduction 

Since the 1960s, an increasing number of studies have focused on investigating the 

determinants of urban residential location choices and their influence on the 

emergence of spatial patterns that are able to affect the daily life of urban 

inhabitants. The theoretical basis of the current mainstream approach to urban 

residential location has its roots in models developed in the beginning of this period 

by Alonso [1], Muth [2] and others. Following the principles advocated by these 

neoclassical models, a unique and efficient order is achieved through residential 

choices that balance a trade-off between housing consumption and commuting costs 

to work.  

mailto:flavia@dpi.inpe.br
mailto:miguel@dpi.inpe.br
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Despite the valuable contribution of these pioneer studies to the development of 

urban and spatial economics, many researchers have doubted its applicability to the 

real world, criticizing some of its simplified assumptions (e.g., lack of 

interdependence of location choices) and, most important, the underlying idea that 

the spontaneous action of market forces promotes higher levels of consumer 

satisfaction and efficiency of resource use [3,4,5].  

Contributing to this debate, this paper presents a spatially-explicit simulation model 

built to explore an alternative perspective to the one provided by neoclassical 

models of urban economics. This perspective is based on the theoretical framework 

proposed by the economist Pedro Abramo in his book "The Kaleidoscopic City" (La 

Ville Kaléidoscopique), first published in French in 1998. Considering the city as a 

setting for disputes between heterogeneous agents with asymmetric power over the 

market, the author builds on the heterodox economic literature to develop a new 

interpretation of how residential choices are made. In this paper, we present 

simulation experiments that explore the role of entrepreneurs’ actions in influencing 

the residential location choice of families and the emergence of different global and 

local residential patterns in the city. 

Following this introduction, the paper is organized as follows: First, we provide an 

overview of the theoretical framework that underlies our model of residential 

location. Second, we introduce the goal and specification of the model, which is 

called Kaleidoscopic-City as a reference to the title of Abramo's book. Then, a series 

of experiments that explore the relations between entities described in the theoretical 

framework is presented. Finally, we conclude with some final remarks. 

Crucial Decisions and Urban Conventions: An Alternative Perspective to 

Urban Residential Location 

Instead of considering the trade-off between space and accessibility, Abramo 

assumes that families choose their location based on neighborhood externalities, i.e., 

they prefer places where lower-income families are not present. According to his 

approach, the residential location choice represents an investment choice, where, for 

instance, parents can invest in the family's human capital by offering good 

neighborhood relations and educational opportunities to their children [3].  

While making their decisions, families perceive the urban space as a mosaic of 

neighborhood externalities and, consequently, evaluate locations that are being 

constantly modified by their own actions. However, because families’ decisions are 

simultaneous and decentralized, no one can know in advance where each family will 

decide to live. This uncertainty about the future can become particularly critical 

when a family decide to make an opportunistic decision of investment and move to a 

location with richer neighbors. This sort of decision may trigger a process that 

Schelling [6] described as "tipping model": it may disturb some wealthier residents 

already established in the location, motivate them to move out, and initiate a 

transformation in the social composition of the neighborhood [3, p.57]. Therefore, 

an opportunistic decision, seen as "non-rational" by the orthodox theory, has the 

potential of becoming a crucial decision, able to lead the future residential order to 
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an unexpected configuration and, therefore, establish a context of radical urban 

uncertainty [3, p.58-59]. 

The state of radical urban uncertainty can be also (and especially) promoted by 

another type of agent whose actions are essential to configure the urban order: the 

capitalist-entrepreneur. Based on the Schumpeterian view of entrepreneurship, 

Abramo emphasizes how entrepreneurs are able to make profits through the practice 

of innovation. By building dwellings that are more innovative and attractive than the 

existing ones, entrepreneurs avoid competition with old housing stocks and redirect 

the demand to the locations where their newly built properties are offered. Thus, 

entrepreneurs are able to modify the urban order by promoting a fictitious 

depreciation of old housing stocks [3, p.71], which does not represent a physical 

depreciation of properties, but a depreciation in the social status of residents living 

in the location. This sort of decision made by innovative Schumpeterian 

entrepreneurs becomes, therefore, a crucial decision that is able to lead to a context 

of radical urban uncertainty. 

Even in this context of uncertainty, market participants need to make their decisions 

based on a game of cross-anticipation, where each agent must anticipate the location 

choices of other agents and the neighborhood externalities emerging from them. To 

address this decision-making problem, Abramo relies on techniques suggested by 

Keynes [7], which indicate that, more than considering their own preferences, agents 

try to guess and imitate the choice of other decision-makers [3, p.112]. This mimetic 

behavior can converge to an urban convention, which is a collective conviction 

regarding the type of family that is going to live in a particular location 

(neighborhood externality) [3, p.287]. 

By adopting a mimetic behavior, agents need to identify who is better informed and 

should be imitated. In this context arises the figure of the Keynesian speculator, 

whose task is to predict the psychology of the market [3, p.137]. Abramo argues 

that, in the residential market, the Keynesian speculator and the Schumpeterian 

entrepreneur are merged into a single figure. Since Schumpeterian entrepreneurs are 

the only able to promote innovations that depreciate existing residential areas, they 

seek to assign themselves the role of emitting signals that announce changes in the 

residential market [3, p.139-140]. Considering the entrepreneurs as better-informed 

agents, families take these signals into consideration while making their residential 

location choice. Thus, the urban convention becomes an element of spatial 

coordination that results from a mimetic speculative process where families elect the 

entrepreneurs' actions as source of information.  

However, if on one hand the entrepreneur sends signals that lead to a spatial order 

(urban convention), on the other hand they introduce innovations that lead to a 

fictitious depreciation of housing stocks and the end of the convention. There is, 

therefore, a tension between the order promoted by urban conventions and the 

disorder introduced by crucial decisions. According to Abramo, this order-disorder 

tension is what reveals the context of radical urban uncertainty and kaleidoscopic 

spatial order that characterizes the market coordination of the urban space [3, p. 

143]. 
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The Kaleidoscopic-City Model 

The ordered-disordered dynamic described above, which is quite different from the 

stable and efficient process advocated by the neoclassical approach, is explored in 

this paper through the Kaleidoscopic-City model. By simulating the interdependence 

between the decisions of heterogeneous agents (families and entrepreneurs) and the 

neighborhood externalities emerging from these decisions, the model seeks to 

investigate how crucial decisions made by entrepreneurs (innovation) contribute to 

change the urban spatial order and the lifecycle of different regions in a city.  

Agents and Environment 

The model presents two types of agents: families (consumers) and entrepreneurs 

(producers).  

Families are spatially explicit agents hierarchized by their income level. They are 

constantly evaluating urban locations and deciding whether to move to a different 

place. In this evaluation, they take two aspects into consideration: the income level 

of neighbors (neighborhood externality) and the innovation degree of dwellings.  

Entrepreneurs are agents responsible for producing dwellings. They are not spatially 

situated, although their actions are constantly affecting the urban space. They are 

characterized by a producer profile, which can be innovative or imitative.  

Innovative entrepreneurs produce dwellings with the highest degree of innovation 

and always in the region recognized by the current urban convention as the one 

where the richest families are going to live. If convenient, they can establish a new 

convention by introducing innovations in a different region of the city. Imitative 

entrepreneurs, on the other hand, do not have the ability of establishing new 

conventions, since the innovation degree of the dwellings they produce simply 

follows standards already set. Also, they may build in any region of the city, 

although they have a higher probability of choosing the region that represents the 

current urban convention.  

The urban environment that is constantly being perceived and modified by both 

types of agents is represented by a grid of cells and subdivided in different regions. 

Each region is composed by a set of cells and can, temporarily, be recognized by the 

urban convention as the region where the richest families are going to live. For 

simplification, we call this region as "urban-convention region", since this paper 

only addresses explicitly the anticipation regarding the location of the wealthiest 

families.  

The cells can be urbanized or not. Once urbanized, they can accommodate one or 

more dwellings, depending on the maximum density allowed in the region where 

they are situated. The dwellings located in a cell are characterized by a certain 

degree of innovation and can be occupied by family agents.  

Process Overview 

The Kaleidoscopic-City model was implemented in Netlogo 5.0 [8] and its 

simulation schedule is summarized in Figure 1.  
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Figure 1: Simulation schedule 

Initial state of the system 

The environment is composed by a finite number of cells (N = 1254) and subdivided 

in 12 different regions. A small number of cells, located within a radius r (r0 = 5 

units/cells) from the center of the grid, are already urbanized before the beginning of 

the simulation. Figure 2 represents the 12 regions in different shades of gray and the 

central urbanized area in a lighter shade.  

An initial number of dwellings (d0 = 20) with equal degree of innovation are 

randomly located within the urbanized area. Each dwelling is occupied by a family 

agent (Figure 2). Families have their income level defined according to a power law 

distribution.  

Entrepreneur agents are also created in the initialization phase. Their producer 

profile (innovative or imitative) is defined according to a user-defined probability.  

 

Figure 2: Configuration of regions and family agents' distribution within the initial urbanized 

area 

Create new families and expand urban areas 

In the first phase of the simulation cycle (Figure 1), n new family agents are created 

(n=15). These new families, which are not yet assigned to any location of the 
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environment, represent a new demand for dwellings and urbanized areas during the 

current time step. Addressing this demand, an expansion of the urbanized radius will 

occur in case the total number of families exceeds a predefined threshold. 

Entrepreneurs' actions 

In this second phase of the simulation cycle, the model simulates the entrepreneurs' 

actions, which are responsible for supplying the demand for new dwellings. For that, 

it executes the procedures summarized in Figure 3.  

The first procedure consists on selecting one of the existing entrepreneurs, which 

can be an innovator or imitator. Afterwards, the entrepreneur will choose a region to 

build the new dwellings. An imitative entrepreneur can select any region of the city, 

with a higher probability (50%) of choosing that region that represents the current 

urban convention. An innovative entrepreneur, on the other hand, will always build 

at the urban-convention region. Nevertheless, innovative entrepreneurs can evaluate 

whether it is convenient to maintain the current convention or not. According to 

Abramo [3], as the housing density of a region increases and approaches the desired 

density for the place, the greater the chances that an innovative entrepreneur will 

attempt to establish a new urban convention (greater uncertainty). In the model, the 

maximum density allowed for a region is set as the "desired density". 

 

Figure 3: Entrepreneurs' actions 

Once the innovative entrepreneur decides to establish a new convention, the region 

chosen to become the new destination of wealthy families starts a new phase of 
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development: its maximum density allowed increases by 1, all of its cells are 

urbanized (in case they were not already) and, most important, the innovation level 

of the new dwellings built in the region will be the highest of the city.  

After selecting a region, the entrepreneur agent will choose a plot and build new 

dwellings. This process, which starts from the selection of an entrepreneur and 

finishes with the construction of new dwellings, is repeated until the total number of 

dwellings meets the demand. 

Families' actions 

In this phase, family agents decide whether to move to a different residential 

location or not (Figure 4). Families that are already living in the city may want/need 

to move for different reasons: 

 They are unhappy about their neighborhood externality (neighbors' income is 

lower than desired); 

 They are attracted to dwellings with a higher degree of innovation; 

 The region where they live received investments that promoted the arrival of 

new and wealthier residents. Consequently, the region's price is no longer 

compatible with the family income level (gentrification). 

 

Figure 4: Families' decision-making process 
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Families who need/want to move will evaluate up to n alternative locations (n=20). 

In this evaluation, families search for an available dwelling that meets the following 

requirements:  

 Those who are dissatisfied with the innovation degree of their dwellings will 

look for dwellings whose innovation degree is within a range that is compatible 

with their income.  

 Those who are already satisfied with the innovation degree of their dwellings, 

but dissatisfied with the neighborhood externality of their current location, will 

look for a place where the average neighborhood income is higher than the 

average income of their social group.  

 

Families who find a dwelling that meets the pursued requirements, will then move 

into the chosen location. Otherwise, they stay in their current dwelling. 

Unlike innovative entrepreneurs, families are not able to intentionally destroy or 

establish an urban convention. Nevertheless, events that are able to disturb rich 

residents who are living at the urban-convention region may motivate them to move 

out and initiate a process that encourages innovative entrepreneurs to establish a new 

urban convention. At the end of a simulation cycle, the model represents this process 

by measuring how satisfied the urban-convention region's residents are regarding 

their neighborhood externality. The lower the satisfaction is, the higher is the chance 

that an innovative entrepreneur will decide to establish a new urban convention. 

Output measures 

At the end of each cycle, two different output measures are computed to monitor the 

dynamics of urban regions: (a) density of dwellings in each region, and (b) average 

income of the residents in each region (proxy of land value).  

In addition, the spatial distribution of wealthy families is monitored through an 

urban segregation index that measures the spatial isolation of this income group [9]. 

Simulation Experiments and Discussion 

This paper presents experiments that explore the role of crucial decisions made by 

innovative entrepreneurs in shaping the residential order of cities. It investigates 

how the practice of innovation and its ability to establish new urban conventions can 

affect the residential location choice of families and the configuration of different 

global and local residential patterns in a city.  

To test the impact of innovation and urban conventions, we simulated and compared 

the emergence of residential patterns under two different conditions: one without and 

the other with innovative entrepreneurs.  

In the first scenario, without innovation, entrepreneurs are not able to interfere on 

the establishment of urban conventions, as there is no differentiation among the 

dwellings they produce and offer to the families. In this case, the only aspect 

considered by the families while choosing a residential location is the income 

composition of families living in the neighborhood (neighborhood externality).  
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In the second scenario, 10% of entrepreneurs have an innovative profile. These 

entrepreneurs can, therefore, assume an active role on establishing (and destroying) 

urban conventions. By building innovative dwellings in a certain region of the city, 

entrepreneurs avoid the concurrency with old housing stocks and can emit signals 

about the future residential order in the city.  

Figures 5 and 6 show the location of families with different income levels and the 

local isolation index of wealthy families along the simulation of both scenarios (t=0, 

t=50, t=100 and t=150). Through the comparison of these two figures, it is possible 

to observe the aggregate outcome of the practice of innovation.  

The scenario without innovation (Figure 5), where families' residential decisions are 

only influenced by the social composition of the neighborhoods, the residential 

dynamics are characterized by a higher degree of inertia, which results in an 

increased stability of neighborhood externalities. As the population of the city 

increases, families tend to occupy the urban space in a uniform manner and 

progressively define the regions characterized by the presence of each social group.  

The scenario with innovation (Figure 6), on the other hand, reveals a situation with a 

much higher level of uneasiness and uncertainty, characterized by a greater mobility 

of families in terms of residential location, which is exactly what ensures higher 

profits for developers. 

 

Figure 5: Simulation without innovation: (a) families' location and (b) isolation of richer 
families 
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The maps showing the isolation of richer families exemplify this difference between 

both scenarios: while in the first scenario, the wealthiest neighborhood was mainly 

kept at the same place during the simulation (Figure 5b), the introduction of 

innovations in the second scenario was constantly modifying the urban conventions 

and, therefore, promoting a frequent change in the places where the richest families 

live (Figure 6b).  

It is also important to remind that the practice of innovation simulated in this 

experiment, which aims at moving the wealthiest families to new locations, 

promotes a fictitious depreciation of older housing stocks. In turn, this depreciation 

intensifies the urban uncertainty by subverting the conventions that prevailed for 

other social groups and giving rise to a chain of displacements of families with 

different income levels.  

This process results in what Abramo [3] described as the image of a mosaic of 

neighborhood externalities in constant mutation or, in other words, the image of a 

kaleidoscopic residential order. 

 

Figure 6: Simulation with innovation: (a) families' location and (b) isolation of richer families 

The graphs presented in Figures 7 and 8 illustrate these considerations by comparing 

the evolution of local residential patterns in both scenarios. In these graphs, each line 

represents the trajectory of an urban region. Two output measures are used to 

monitor these trajectories:  
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 density of dwellings, which illustrates how intensive are the investments in a 

region (Figure 7); 

 mean income of families, which is here considered as a proxy of the land price 

in a region (Figure 8).  

In the first simulation experiment (without innovations), the density of dwellings 

increases uniformly in all regions of the city (Figure 7a). This pattern is very 

different from the one obtained in the experiment with innovations (Figure 7b), 

where most regions have periods of accelerated increase in density (when set as the 

convention region), alternating with periods of stagnation.  

 

Figure 7: Density of dwellings in the urban regions: scenarios without and with innovation. 
Each line describes the density of a region.  

 

Figure 8: Mean income of families in the urban regions (proxy of land price): scenarios 
without and with innovation. Each line describes the average income of families living in a 

region.  

Regarding the mean income of families (Figure 8), it is possible to observe how the 

variation of this attribute is much smaller in the first scenario (without innovations). 

The graph in Figure 8a shows that, after an initial instability associated to small 

population sizes, regions tend to present a relatively stable neighborhood externality 

(and, therefore, land price). On the other hand, because the innovations introduced in 
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the second scenario promote a constant restructuration of the existing neighborhood 

externalities, Figure 8b shows patterns characterized by "peaks and valleys". 

The local outcomes of the practice of innovation can be seen in more detail in Figure 

9, which shows the trajectory of urban conventions (Figure 9c) and its impact on the 

development of urban regions (Figure 9a and 9b). In Figure 9a, each line describes 

the dwelling's density of a region, while in Figure 9b each line describes the average 

income of families living in a region.  

 

Figure 9: Urban conventions and regions' life cycles. 

Taking the example of Region 1 (R1), which is represented by the black line, we can 

see that in periods when this region is the current urban convention (highlighted with 

a gray shadow in Figure 9), the place enters a transition period, characterized by 

intensive investments and a sudden increase in dwellings' density (Figure 9a). At the 

same time, the region becomes more attractive to richer families and a strong 

increase in prices takes place (Figure 9b). This transition period ends with the 
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emergence of a new urban convention. Then, the investments in region 1 cease and 

the density of dwellings is kept almost constant (phases 1, 2, 3). With the most 

innovative dwellings of the city being now located in a different region (new urban 

convention) richer families feel motivated to move out from region 1 and are 

substituted by families with lower income. This process causes a fictitious 

depreciation in region 1 (Figure 9b): the housing dwellings remain the same, but the 

social status of families living in the region (neighborhood externality) decays.  

By observing and comparing the different sort of information provided in Figure 9, 

it is possible, therefore, to see how the succession of urban conventions traces the 

life cycles of urban regions, including their history of housing stocks and 

neighborhood externalities. In these life cycles, transition periods characterized by 

the construction of innovative dwellings and increase in prices are separated by in-

between phases where the housing stock is preserved, but different configurations of 

neighborhood externalities take place (fictitious depreciation). These dynamic 

processes, here demonstrated through simulation experiments, are theoretically 

described in Abramo's book [3].  

Final Remarks 

This work presents a spatially-explicit simulation model that explores the heterodox 

perspective of urban economics proposed by Abramo [3]. Unlike the orthodox 

school, Abramo's approach assumes that the residential location is not an individual 

and independent process. Instead, it emphasizes the interdependence between agent's 

decisions and the spatial externalities emerging from them.  

In this paper, we particularly focused on the impacts of entrepreneurs’ decisions. 

While in the neoclassical view entrepreneurs assume the neutral position of price-

takers, the Kaleidoscopic-City model emphasizes their active role as price-makers. 

In the pursuit of higher profits, they can try to manipulate the sovereignty of 

consumers through the practice of innovation. 

This alternative way to envision the residential market has implications for the 

future urban order and, consequently, for the development of urban policies. The 

approach explored in the Kaleidoscopic-City model is built on the Keynesian 

speculative-financial paradigm, and not on the neoclassical exchange paradigm. 

Studies and policies developed under this perspective should, therefore, do not rely 

on economic predictions, but on the historical process of urban development and the 

possibility of having economic agents making crucial decisions that redefine the 

course of history.  
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Abstract 

Cellular automata that originated from the field of computer science and complexity 

theory soon found their way into various disciplines. There are several good reasons 

for the implementation of cellular automata in urban growth and land use change 

studies, mainly the bottom-up generation of land use change or the availability of 

raster data on land use and land cover. On the other hand, cellular automata do not 

explicitly represent the land use change factors and other land use change factors are 

completely ignored. To overcome the deficiencies of cellular automata for land use 

modelling, significant modifications to the original concept of cellular automata 

were adopted. This paper will present the improvements in structured form based on 

examples of several existing simulation models. 

Introduction 

Cellular automata emerged in the field of computer science to be used mainly by 

proponents of complexity theory to demonstrate the relation between the micro and 

macro behaviour of complex systems. The cellular automata are based on rather 

strong assumptions of the autonomy of individual automata behaviour, homogeneity 

of their characteristics and transition rules. This paper claims that those features 

make cellular automata suitable for the study of general processes of urban growth, 

spread of diseases or propagation of innovations, but less for study of land use 

change processes in general. The main reason is the artificiality of cellular automata 

that makes them ignore many aspect of the physical, economic and legal reality 

causing the important drivers and agents of land use change being improperly 

represented.  

Several decades of effort to implement cellular automata for land use simulation 

have brought many interesting innovations that made the usability of cellular 

automata for land use studies much more acceptable. The most significant 

adaptations of cellular automata are described in the background of several existing, 

well known simulation models. 

Disaggregated description of land uses 

The disaggregation of land use to multiple categories is necessary to distinguish the 

qualitative differences between particular land uses. The examples of land use 
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categories typically used by models are: housing, industry, service-retail, streets and 

routes and in the case of the DUEM model [1] or gardens, field crops, pastures, 

vineyards, riparian, native vegetation, water, urban, barren and feedlots in the case 

of the SLEUTH model application in San Joaquin County in California, USA [2, 3]. 

The increase of the number of cellular automata states implies the higher complexity 

of transition rules. The calibration of complex transition rules is not an easy task as a 

sufficiently high number of observations of land use transactions between each land 

use category are required. In reality, land use change is a rather slow process usually 

offering an insufficient number of observations, especially in some land use 

categories. 

To reconcile the complexity of transition rules with the available data on land use 

changes usually the number of land use categories is decreased by aggregating the 

land use categories of rare occurrence or land use categories that rarely undergo 

transformation. Another solution to the problem is to decrease the size of cells to 

obtain more observation of land use changes. A priori constraining selected land use 

transitions is yet another strategy how to reduce the transition rules complexity. For 

example, the CUF II model uses specific land use sequences that are assumed to be 

significantly more probable than others [4]. The restriction of selected land use 

transitions responds to the observed irreversibility of some land uses, such as urban 

land uses that can hardly be transformed to agriculture land use. 

Relaxing the cellular automata shape 

The homogeneity and regularity of cell shape does not conform to the complex 

morphology of physical structures, administrative and property borders observed in 

reality. This hinders the acceptance of cellular automata as practical tools for policy 

impact assessment. Some land use models, e.g. the one developed by Ferdinando 

Semboloni [5], relax the regular and homogeneous shape of cellular automata to 

adapt to irregular morphology and enable the representation of the parcel division 

and merger processes. The uneven spatial distribution of characteristics led, in the 

case of CUF I model, to individually adapting each cell shape to get cellular 

automata with homogeneous land use, regulations, ownership or physical 

characteristics [4, 6]. 

Including distant interaction  

Each cellular automaton has a static set of finite neighbours to interact with. The 

influences from a broader context are gradually propagated through the 

neighbouring cellular automata by changing their states. This is appropriate for the 

study of diffusion processes such as processes of succession, spread of infections or 

dissemination of innovations. In reality, many drivers of land use change are not 

mediated through neighbouring cellular automata. Many land use change drivers are 

active in different temporal and spatial scales from the one, in which cellular 

automata act. For example many types of flows, i.e. flow of products, investment or 

population are at best ony implicit to the cellular automata transition rules. 
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The inclusion of distant interaction into cellular automata transition rules is in many 

cases realized by the extension of the cellular automata neighbourhood. For 

example, the Metronamica model extends the size of the neighbourhood from the 

traditional nine cell neighbourhood to one with hundreds of cells [7, 8]. The DUEM 

model expands the size of the neighbourhood in a similar way.  

An extended neighbourhood enables the inclusion of distance as a factor influencing 

the strength of the interaction between pairs of cellular automata. In this respect, 

cellular automata get closer to the principle of space-interaction models that utilize 

some form of distance decay function. The inclusion of the distance decay function 

into cellular automata interaction further increases the complexity of simulation 

models and makes the models difficult to calibrate using the available data on land 

use change. When considering the necessity of evaluating the interaction between 

each pair of land use categories, the automatic calibration of the distance decay 

function based on available data as in space-interaction models is not feasible and 

some simplification of the calibration process is necessary. The Metronamica model 

reduces the definition of the distance decay function to four representative points, 

where each point has a special meaning in the neighbourhood. DUEM model 

implements only two discrete spheres of influence [8].  

The inclusion of distant factors of land use change increases the ability of cellular 

automata to reflect important drivers of land use change. On the other hand it does 

not change the fact that the cellular automata immobility prevents from meaningful 

representation of real agents’ decision making as the mobile agent can realize its 

preferences either by exploiting the characteristics of the locality, in which it resides 

or to move to a new location, from its preferences point of view more suitable. The 

agent-based models are therefore closer to the decision making processes of real 

agents such as households and firms and enable the study of the migration processes, 

residential choice and resulting processes of spatial concentration of agents and 

resources.  

Making cellular automata size and transition rules mutable 

The cellular automata behaviour is dependent on the size of cells, definition of their 

states (land use categories) and transition rules. As those characteristics are defined 

a priori and not easily modifiable in the course of simulation, it is impossible to 

explicitly represent the changing nature of land use transformations. There are 

several attempts to circumvent the immutable size and behaviour of cellular 

automata. For example, the SLEUTH model proposes behaviour aggregation by the 

concept of Deltatron, which is an agent that modifies the behaviour of individual 

cellular automata in such a way that the coordinated behaviour of a group of cellular 

automata emerges [2, 3]. A similar concept is used in the OBEUS model, in which 

the behaviour of unitary urban entities can be aggregated in the form of ensembles 

called domains. The opposite process of cellular automata division is presented in 

the model designed by Semboloni that employ the Voronoi partitions to cellular 

automata [9]. 
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Reflecting different temporal and spatial dynamics of land use change  

The land use change results from the immediate interaction among cellular automata 

in their neighbourhood. The transition rules do not reflect the past, land use changes 

or the potential of land use changes in the future. The autonomous behaviour of 

individual cellular automata represents the land use change only on the level of 

individual cells and the larger clusters of identical land uses are only product of their 

spontaneous behaviour. Therefore, the land use clusters are not regarded as 

qualitatively different, autonomous entities that would influence the behaviour of 

individual cellular automata by any means, i.e. by (dis)economies of scale. 

However, in reality observed land use changes demonstrate the autonomous 

dynamics that transcend the spatial scale of the automaton neighbourhood and the 

temporal scale of a single cellular automata cycle.  

The land use models based on the principle of cellular automata adopt various 

strategies to cope with the problem of temporal and spatial dynamics of land use 

change. One approach, aiming at temporal dynamics of land use changes, is that of 

the land use life cycle. Each land use, once initiated, must pass through all of the 

prescribed life stages: initial stage, when it has a potential to initiate the land use 

changes in neighbouring cells, the maturity stage, when the ability to initiate land 

use change in its surrounding disappear, the stage of decline, when the land use 

disappears leaving space for another land use initiation. This principle is applied in 

the DUEM model [1].  

An alternative approach considers land use change to be the result of a gradual 

accumulation of a particular land use potential over a certain time period. The 

cumulative potential equals the sum of past potentials in a certain time period that 

are discounted by the time decay [9].  

Yet another approach does not derive the probability of land use changes exclusively 

from the influences of neighbouring cellular automata, but from past trends 

describing the overall land use changes. This approach is close to the Markov chain 

models and is employed by the SLEUTH model [2, 3]. 

The spatial continuity of land uses that is experienced in the real world as 

continuous fields of identical land uses had been introduced into the cellular 

automata by the concept of Deltatron [2, 3] and ensembles of land uses called 

domains in the OBEUS framework [10]. Deltatron is an agent of land use change 

residing in delta 2D space that is parallel to the cellular automata 2D space. 

Deltatron is initiated at the moment when an automaton spontaneously changes its 

land use. The initiated Deltatron than modifies the behaviour of single cellular 

automata in the neighbourhood in such a way that the bigger clusters of land uses 

gradually emerge. When Deltatron cease to be active, the cluster of spontaneously 

created identical land uses slowly disintegrates [2, 3]. 

Economy of land use resources  

Land use changes are generated exclusively by autonomous decisions of cellular 

automata with regards to their neighbourhood composition ignoring the constraints 

to global availability of land use resource. The simple solution of the limited 
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resources allocation problem is to impose exogenous constraints on land use 

demand. The supply of the land use then does not result from the autonomous 

cellular automata behaviour anymore, but from the suitability of their characteristics 

for specific land use. A typical example of this approach is the Metronamica model 

[7]. 

Other approaches incorporate the demand and supply factors directly into the 

individual cellular automata decision making mechanism. This approach is adopted 

by the CUF II model [4], in which the decision making mechanism of cellular 

automata has the form of a multi-nominal regression model that evaluates the 

probability of each land use transition based on demand factors: percentage of 

employment change, percentage of household change, number of households, 

number of jobs, job/household ratio and supply factors of land suitability and 

accessibility. The demand and supply sides are balanced a priori and exogenously 

by calibrating the supply and demand parameters of multi-nominal regression model 

on the bases of historical land use changes [4]. 

In both of the cases presented, demand and supply are not adjusted endogenously. 

To establish the balance between the supply and demand endogenously, the explicit 

representation of the market mechanism would be necessary. The SLUDGE model 

created by Dawn Parker demonstrates such a mechanism [11]. The cellular automata 

in the SLUDGE model represent the landlords who decide between agriculture and 

industry land uses based on the profit that each land use offers. The profit is 

determined by two factors: the cost of production that is affected by negative 

externalities caused by pollution from the industry and the cost of transportation of 

products to the market place. Agriculture land use is the recipient of the negative 

externalities produced by a neighbouring industry. Price is established based on the 

shortage or surplus of products on the market, and the decision making of landlords 

is influenced exclusively by the price of the products on the market and the cost of 

production and transportation. During the simulation model run, each landlord tries 

to find the best use for its land given the neighbouring land uses, distance to market 

and price of products on the market. The model demonstrates that equilibrium can 

be attained by different land use configurations with different Pareto efficiency [11].  

But even the SLUDGE model is still based on unrealistic assumptions: there is 

neither communication nor bargaining between individual landlords and the 

landlords are expected to have homogeneous preferences and willingness to pay. 

This may be true for many markets with ordinary goods but not for markets that 

most significantly influence land use: the housing and land markets. Houses and 

land as traded goods are heterogeneous in their characteristics. Furthermore, the 

preferences and constraints of individual buyers differ substantially with respect to 

houses and land.  

To overcome the deficiencies the heterogeneous demand, individual characteristics 

of traded goods and process of individual transactions will need to be explicitly 

represented [12]. 
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Inclusion of exogenous factors of land use change  

Often the impact of various regulatory and development policies on the behaviour of 

individual subjects need to be assessed. For those purposes each cellular automaton 

can be regarded as a landlord autonomously deciding on best use of its cell. Its 

decision that is based on its ideal preferences can be then externally constrained. In 

this way the land use simulation models, such as the Metronamica or the SLEUTH, 

can serve as the experimental environments that enable the impact of policy 

prescriptions in the form of spatial limits or the impact of various infrastructure 

projects to be tested.  

There are several alternative approaches to the incorporation of external constraints 

to cellular automata decision making. In the SLEUTH model the autonomous 

behaviour of cellular automata is constrained ex-post [3]. However, in the 

Metronamica model, the exogenous factors of suitability, global accessibility and 

zoning enter directly into the transition function alongside traditional neighbourhood 

effects [7].  

To evaluate the impact of external constraints on the behaviour of individual cellular 

automata, the unconstrained behaviour of cellular automata has to be considered first 

on the bases of their ideal preferences. But the inference of cellular automata 

transition rules only from the observed behaviour of real subjects does not enable the 

ideal preference structure of the subject to be distilled as a derivation of the subjects’ 

preference structure exclusively from the observed behaviour can lead to the 

unrealistic behaviour of automaton mainly when there is a significant change in 

external constraints to their behaviour [14]. 

To simulate the unconstrained behaviour of cellular automata, the simulation models 

have to be based on an ideal preference structure that is declared by the decision 

making entities themselves and not derived from their observed behaviour. Various 

methods such as the conjoint analysis can be applied for the analysis of the ideal 

preference structure [15]. 

The limits to cellular automata based land use models 

The response to the oversimplification of the cellular automata models was the 

relaxation of the original cellular automata assumptions. The modifications of the 

original, oversimplified assumptions generally led to the improved predictive 

validity of land use cellular automata models such as the SLEUTH and the 

Metronamica [14, 3]. On the other hand, some limits for the representation of real 

land use change processes are inherent in the cellular automata principles. The 

cellular automata, while being supportive in illustration of complex system 

behaviour in general, offer only excessively oversimplified representation of real 

urban processes. The cellular automata do not reflect the real specificity of particular 

urban systems behaviour and does not make use of practical and scientific 

knowledge of them. 

The effort to explicitly represent the driving processes of real land use transitions 

logically leads to more general agent-based models that are better suited to represent 

diverse subjects and entities participating in land use change, but the lack of suitable 
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data on the behaviour of individual subjects and data on the specific processes that 

prevent more widespread use of agent-based models. The cellular automata therefore 

remain very attractive due to their simplicity and abundance of land use and land 

cover data. 
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Abstract 

Some interacting particles systems, describing the stochastic evolution of particles 

jumping on a lattice, are since recently used to model traffic flow. The approach is 

close to cellular automata. Yet, the time is continuous with particles models while 

the evolution is discrete with cellular automata. We propose to compare and connect 

the two modelling approaches. The comparison is illustrated through the basic uni-

dimensional totally asymmetric simple exclusion process. 

Introduction 

Microscopic traffic flow models by cellular automata have been developed since the 

1990's, and based on discrete synchronous time and discrete space. They are used 

for theoretical purposes as well as simulation tools [1,2,3,4]. 

Interacting particles systems, proceeding from the fields of probability and statistical 

physics, are also applied to model traffic flow [5]. The evolution of particles 

jumping on a lattice by means of Markov jump processes in continuous time and on 

a discrete space, such as for instance an asymmetric exclusion process [6], is used to 

model multi-lane traffic flow [7]. The zero-range process [6,8] is fitted to model the 

evolution of vehicle distance gaps [9] and the evolution of vehicles platoons [10], as 

well as the misanthrope process [11,12]. 

One proposes to compare continuous-time interacting particles systems to stochastic 

discrete-time cellular automata. We try to show how interacting particles systems 

may be seen as an extension in continuous time of cellular automata in section 2. 

The main properties of interacting particles processes and cellular automata are 

introduced. The two modelling approaches are illustrated through the totally 

asymmetric simple exclusion process in section 3. 
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Comparing particles systems to cellular automata 

The interacting particles systems are composed of particles and sites, but different 

interpretations of particles and sites lead to different traffic flow models. For the 

basic exclusion process, a particle is a vehicle and a site is a cell that may contain at 

most one vehicle [7]. With the misanthrope process, a site is portion of a lane that 

may contain several vehicles [12]. The zero-range model is convenient to describe 

the evolution of the distance gaps in car-following [9]. Then, a site is a vehicle and a 

particle an unit of distance gap. When a vehicle jump to the next site, a unit of the 

distance gap is given to the following vehicle. The model is an exact mapping of an 

exclusion process for which the jump of a vehicle depends solely on the distance 

gap. The zero-range model is also used to model the evolution of vehicles platoons 

[10]. A site becomes an empty cell and a particle a vehicle following directly the 

cell. 

Let  be a finite set of sites.  is the number of particles at site at time 

. Then  is the state of the process, with or 

 if the number of particles by site is limited to . In this last 

bounded case, the interacting particles process is close to a cellular automaton. But 

the evolution schemes diverge. The former evolves in continuous time while the 

latter's evolutions is discrete. 

Particles system in continuous time  

In continuous time, the process  is a Markov jump process specified by a rate 

function at which transitions occur. If is finite, a transition from 
 
to  (with 

) occuring at rate  means that: 

.  (1) 

For the totally asymmetric exclusion process, the jump rate is the function:  

  (2) 

with the jump rate that may depend on the system state,  a site and 

 

In the simple case considered below, the jump rate is constant . For the 

zero-range process, the jump rate depends only on the number of particles on the 
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departure site, while for the misanthrope process it depends on the numbers of 

particles at the departure and arrival sites. 

The process defined by jump rate function and space state  is characterised by 

an operator , denoted as the generator: 

  (3) 

where  belongs to , the set of functions from  to  depending on a 

finite number of coordinates. 

The process is usually described by its performances in stationary state. The 

stationary distribution of the process  is such that: 

 

For all . The stationary distribution is given by the generator. A probability 

measure on is stationary for the process  if and only if the measure is not 

nil everywhere and if: 

  (4) 

Note that the sum is finite since only depends on a finite number of coordinates. 

The set of the stationary distributions is always nonempty for finite . Yet, explicit 

forms for the stationary distributions exist mainly in basic cases.  

A reversible measure such that: 

 (5) 

is stationary. It is easier to solve (5) than (4). Reversibility is a sufficient but not 

necessary condition for a measure to be stationary. For instance, totally asymmetric 

process may have a stationary distribution which is clearly not reversible. 

The zero-range process admits a unique stationary distribution with a product form 

for spatial invariant initial configurations. The product form of a stationary 

distribution means that the number of particles by site are statistically independent in 

stationary state. This property generally simplifies the calculus. The misanthrope 

process has this property only in a particular case. 

Discrete time case towards cellular automata 

In a discrete time case, the process is defined at times for a given time 

step . The discrete time process  is yet indexed by . In this case, the 

process is described by a Markov chain with transition matrix such that: 
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 (6) 

 is a probability matrix in the sense that for all and 

 for all . 

For instance, assume that the process represents the evolution of the distance gap of 

a line of vehicles. A site  is a vehicle and  is the distance gap of the vehicle 

 at time . For the basic symmetric model [1], vehicles jump with a speed that is 

the minimum beetwen the distance gap and the unit. The maximum vehicles’ speed 

is the space step divided by the time step. For this deterministic model:  

  1, 1 nnP 
 

for 

 

with  1),(min)(1 xxv nn  .
 The Markov chains are usually described in stationary state with the invariant 

distributions of the process , satisfying: 

 

and such that: 

 (7) 

(this equation is usually related as the master equation in statistic physics). A 

reversible measure  such that: 

 

is stationary. 

As for the continuous time case, the set of stationary distributions is not nil for the 
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calculate the new jump times of sites where the jump rates have been modified. Note 

that, from a practical view, the continuous time model avoids the problem of priority 

between two particles coveting simultaneously the same site, since particles jump 

successively. 

In the discrete time case, the discretisation scheme and the value of the time step 

must be defined. For cellular automata, the update is synchronous. Yet, as we will 

show in a particular case in the next section, the choice of a synchronous or a 

sequential updates leads to different discrete processes. 

The process can be simulated too by event as in the continuous time process by 

subtituting the continuous exponential distribution with a discrete geometric 

distribution. The simulation can also be iterative, by updating all the sites at each 

time step. 

Connecting the approaches 

We aim now to connect the continuous and discrete time approaches. In the 

continuous time case, the time  between a transition from  to  follows a 

continuous exponential distribution with parameter . In the discrete time 

case, this time, yet denoted T  is  times a discrete geometric distribution with 

parameter . By choosing: 

 

one can explicitly demonstrate that the time for a transition in the discrete case 

converges in distribution towards the transition time in the continuous case: 
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for all . This mapping allows to compare continuous and discrete time 

approaches through the value of the time step. Note that  is required so that 

the time discretisation has a meaning. The performances of the discrete process 

depend on the value of the time step. 

Totally asymmetric simple exclusion process 

The exclusion process [6] is an interacting particles system for which the number of 

particle by cell is limited to 1. In the discrete time case, the model corresponds to the 

NS traffic flow model [2] with a maximal speed value of 1. In the totally asymmetric 

case, the particles jump only to the next cell with a rate of  if the cell is 

empty (see jump rate function (2)).  

The process is one of the simpler conservative and uni-directional flow models. In 

the continuous time case, particles jump to next sites if empty, according to 

independent exponential clocks of parameter . In discrete time case with time step 
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, particles jump to next sites if empty, according to a probability . To 

connect the models, let us assume that . One has  so that  is a 

probability. The discrete process is deterministic if  and random for 

. 

Stationary distribution of the process 

The stationary distribution of the exclusion process is not known for any rate 

function. Yet, the simple process where the jump rate is constant is well-known. 

For an infinite lane and invariant in space initial configurations, if  describes the 

distance gap of the vehicles, the unique stationary distribution  of the totally 

asymmetric simple exclusion process is the product form: 

 

[13] with the marginal geometric stationary distribution for the distance gap: 

. 

For an infinite lane, the distribution depends on a velocity parameter  usually 

called fugacity. For a bounded case, the invaraint distribution depends on the 

boudary conditions for an open system, or on the density level for a close system.  

The fundamental diagram of mean speed or flow volume as a function of density can 

be considered as a global indicator of the model performances studied in the traffic 

community. Using the stationary distribution of the distance gap, the mean value is:  

 

while the fundamental diagram of flow volume  as a function of density  is: 

. 

In the discrete time, the flow Q as a function of density is: 
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if the update is synchronous [14], while the performance is the same as in the 
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The fundamental diagrams of mean speed and flow volume as a function of density 

are plotted for the continuous and discrete time cases in figure 1. For this model, the 

continuous time smooths the performances in stationary state. 

Trajectories obtained 

Some trajectories starting from an initial jam configuration are plotted in figure 2 to 

compare the approaches. In the deterministic discrete case where 1  the initial 

jam propagates indefinitely. It is not the case for the stochastic models where 

9.0  or 5.0  or when the time is continuous. In theses cases, the traffic seems to 

converge towards stationary states that do not explicitely depend on the initial 

configuration. This is clearly not the case for the deterministic model where the 

stationary state is a periodic limit state depending on the initial configuration. This 

observation suggests that the calculus of the stationary state may be easier with the 

stochastic models. 

 

Figure 1: Fundamental diagrams in stationary state for the TASEP in discrete synchronous 

(with 5.0 , 9.0  and 1, dotted lines) and continuous time cases 1 . 

Conclusion 

Homogeneous interacting particles systems differ from cellular automata through 

evolution schemes. The cellular automata models are defined in synchronous 

discrete time, while the particles systems are continuous in time. In both case, the 

simulation is easy. 

The discrete time approach can lead to additional settings and parameters regarding 

to the continuous time approach. Yet, time discretisation can have a physical sense 

such as a reaction time, and allow to control the stochasticity. Notice that there is no 

periodic stationary state with continuous time models. This aspect may simplify 

analytical investigation as well as avoid unexpected periodic phenomena (sometimes 

related as ping-pong effect with cellular automata). Moreover, due to the sequential 

evolution of the particles, there cannot have conflict where two particles covet the 

same site simultanously with the continuous time. This aspect concerns notably 

multi-directional flow models by cellular automata and intersection traffic models. 

Lastly, the vehicles’ maximum speed is bounded to a space step by a time step with 
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cellular automata (condition similar to CFL one). It is not the case with particles 

systems since the time is not discretised. 

 

Figure 2: Trajectories of 7 particles since an initial jam configuration with the exclusion 

process where 1  for different evolution schemes. 
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Abstract 

Abuse of alcohol among post-secondary students is considered a serious health issue 

and a body of academic literature has developed around its study. Binge drinking, 

the consumption of five or more drinks in a single setting, is common, and clearly 

has strong social aspects. The influence of social interaction among peers on binge 

drinking has been noted but is not yet well understood. A cellular automata 

simulation of these phenomena is presented here. Model design, methodology, and 

experimental results are discussed. This project illustrates the role simulation 

modeling can take during exploratory phases of research. 

Introduction 

The heavy consumption and abuse of alcohol among post-secondary students has 

gained considerable attention in recent decades, influencing a significant body of 

academic research [2][7][9][15]. Heavy episodic alcohol consumption, known as 

binge drinking, continues to be a popular social activity among post-secondary 

students, with a larger proportion of this population engaging in binge drinking than 

non-students of the same age [7][13]. 

Binge drinking is defined as the consumption of five or more drinks in a single 

session1 (see [3][12]) and has been associated with a number of negative effects, 

including many with health, behavioral and social consequences [1][5]. Alcohol-

related health and wellness concerns are particularly well-documented in recent 

                                                                 
1 There is significant variation and debate in the definition of binge drinking among academic 

literature. Some researchers include gender-specific definitions, such as five drinks per sitting 
for males, and four for females [6][7] [14].  Others add time constraints to further define a 

drinking session [5]. 
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research. Long-term alcohol abuse is commonly associated with direct toxic effects 

such as liver and kidney damage [24]. Various health risks impact the post-

secondary population in particular, including illness, injury, risky sexual behavior, 

alcohol dependence, and death [7][22]. Wechsler and Nelson [14] report than an 

estimated 1700 college-aged students die from alcohol-related injuries every year, a 

large proportion of which are associated with motor vehicle accidents. Heavy 

alcohol consumption has also been linked to poor academic attendance and 

performance, as well as criminal and deviant behavior, including physical and sexual 

assaults, vandalism, weapon use, drug use and arrest [2][5][7][10][23]. Second-hand 

impacts of heavy alcohol consumption have also been documented among non-

bingers and abstainers within the post-secondary environment, including personal 

and property victimization, and interrupted study and sleep patterns [9][22]. 

Although its consequences are well documented, binge drinking is a complex 

behavior associated with and influenced by a variety of environmental, biological 

and social factors. Within the post-secondary setting, age, gender, family history and 

ease of accessibility to alcohol, among other factors, have been found to be related 

to the prevalence of binge drinking [13][15]. In addition, recent research has further 

stressed the importance of social influences on post-secondary student binge 

drinking. Such behavior is more prevalent among students involved in athletics and 

social organizations including fraternities and sororities [14][15][22]. The (actual or 

perceived) drinking patterns of peers and the approval of friends may also influence 

one's alcohol consumption [8][9][14]. These findings support the theoretical 

contributions of social learning theory, which proposes that human behavior, 

including binge drinking, is learned from interactions through peer groups and 

exposure to alternate values and norms [22]. With this in mind, investigating the 

effects of peer influences on binge drinking behavior may provide a better 

understanding of alcohol consumption in post-secondary students.  

Research through simulation modeling 

While conventional statistical techniques are able to effectively demonstrate the 

importance of peer influence on binge drinking, they are limited in their ability to 

answer more complex questions about such behavior. For example, one may be 

interested in understanding how different types of social interactions effect the 

development of binge drinking among groups of college and university students. 

Similarly, one may be interested in understanding the effect of environmental factors 

on binge drinking behavior. Through the use of non-linear mathematical modeling 

techniques, these areas of interest may be explored.  

In addition, such techniques may be employed in simulation models to test a variety 

of scenarios where “what if?” questions may be posed. For example, one may want 

to know if binge drinking behavior develops differently among populations that have 

different proportions of drinker types. Alternatively, one may be interested in 

knowing if populations of binge drinkers change over time when various social and 

environmental influences change. Through the use of non-linear mathematical 

modeling, it is possible to capture these complex dynamics and answer research 

questions that could influence public policy. 
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With respect to peer influences on drinking behavior, several non-linear 

mathematical models have been proposed. For example, Gorman, et al developed an 

agent-based model to examine social dynamics and environmental influences on 

agents’ drinking behaviors [4]. Through a variety of simulations they were able to 

demonstrate that contacts between agents were important factors in the social 

dynamics that influenced drinking. Similarly, Ormerod and Wiltshire developed an 

agent-based model to analyze the growth of binge drinking in the United Kingdom 

[11]. Through development of a theoretical model and calibration with survey-based 

data, the authors were able to show that the imitative behavior spreading across 

social networks is a reasonable hypothesis to account for the patterns of binge 

drinking that had been observed in recent years. 

Agent-based models, however, have some limitations. Applications of agent-based 

models in the social sciences often involve human agents with complex behavior 

and psychology that are difficult to quantify and calibrate. As a result, caution must 

be taken when interpreting the quantitative outcome of such models when the 

accuracy of the inputs is questionable [25]. In addition, agent-based models require 

the description of individual units which can be computationally intensive and time 

consuming [25], limiting the number of agents included in a simulation, as well as 

their detail and level of interaction. 

In this project, we adopt Cellular Automata (CA) modeling as a means to focus 

solely on the elements of concern: individual state (binging) and local interactions 

(peer pressure). CA models are well suited for exploring the dynamics that occur 

within a population, and are useful for visualizing the clustering behaviour of 

communities. With this more abstract approach, it is possible to simulate large 

populations with reasonable computational requirements. 

Cellular automata modeling 

In a CA model, a population can be represented in a two dimensional square grid 

where each cell represents an individual in the population [17]. The state of each cell 

can vary depending on pre-determined rules. These rules are derived from an 

existing theoretical framework describing a particular phenomenon and are used to 

model what is happening in the real world. A CA model can effectively capture 

social interactions that happen over time [16][19]. Since each cell has the capability 

of holding the information pertaining to that cell, changes can be recorded. In 

general, CA models measure time discretely, in other words, progress through time 

is represented as a series of time steps. The cells capture the information at each 

time step and their states can alter through successive time steps [20]. 

In order to simplify the complexity of human behavior, CA modeling must make 

assumptions which are supported by research. While each cell in a CA model can 

potentially be influenced by surrounding cells, this model accounts for only four 

neighbors: north, south, east and west. The assumption here is that individuals are 

not impacted by everyone that physically surrounds them, but only those people they 

have social contact with. This type of neighborhood is called the von Neumann 

neighborhood. 
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In this CA model the social interactions progress through time steps. The cells 

capture the information at each time step and alter their state through successive 

steps. These updates happen simultaneously following the pre-determined transition 

rules. We assume this model to have a constant population even though there are 

processes of births, deaths, immigrations and emigrations in any population. 

The model 

This model represents a social community of individuals with a high-risk of binging 

behavior that extends beyond the physical boundaries of a specific geographical 

area. Specifically, we consider a community of post-secondary students and their 

direct social acquaintances. This community consists of three types of individuals. 

 

 Non-Binger (NB) 

 Occasionally Binger (OB) 

 Frequently Binger (FB) 

 

An individual can only play a single role at a time. Over time individuals can 

transition from one state to the next based on predetermined rules. For example, an 

OB can become a FB due to social interaction, and later become a NB following a 

health problem. The purpose of this study is to analyze the evolution of a fixed 

population in a community of such individuals. 

Model design 

This CA model integrates social influences and transition rules. The cells in the grid 

interact as individuals would in a social community. The cells change over time as 

they receive and give social influence to their neighbors. After each iteration, the 

grid is updated to reflect the modifications. Since this is a scenario-based model, the 

variables can be set according to input data and adjusted to reflect possible changes 

in the community. Although the cells are stationary, the state of the cell can vary. 

This reflects the change in social state individuals may experience during their life 

course. These changes occur as a result of social influences and experiences. We 

selected the von Neumann neighborhood and use the average of the surrounding 

cells to describe these social interactions. Further, at any given time only a random 

subset (i.e., one to four) of the neighbors exert social influence on a cell. 

Modeling Process 

The process of developing this model was similar to that described in [18]. We 

began by surveying existing literature in order to generate a conceptual model of the 

phenomena under study. We found that for binge drinking, while its characteristics 

and effects have been well studied, the role of peer pressure is less well understood. 

Clearly it is important: within the post-secondary setting, direct peer influences may 

include pressure to consume alcohol by offering a drink, buying a round, or 
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encouraging drinking games [21]. Social influences may also be indirect or passive 

in nature, associated with perceived norms of heavy drinking among peer groups, 

and general accessibility to alcohol within the post-secondary education setting 

[9][15]. Ambiguity can be discouraging for a modeling project, but it is precisely 

due to the difficulty of performing real-world experimentation and study on this 

topic that makes this kind of attempt useful. 

We proceeded to develop a mathematical model describing the various categories of 

binge drinkers, and how change in category occurs. A computational model was 

built, and preliminary experimentation showed the behavior resulting from the 

proposed model. From this evidence, we returned to the conceptual and 

mathematical models, and revised them. This process continued iteratively, noting 

new behavior, and making changes as our understanding improved or as new 

questions were raised. We retained intermediate models so that variations in 

modeling binge drinking can be compared. Through this exploration of the 

theoretical space associated with modeling binge drinking, we were able to identify 

some model characteristics that matched our understanding of the phenomena, and 

some that did not. 

This approach is well suited to problems like this where the existing research does 

not yet fully explain how a process takes place. Combining mathematical modeling 

with computational simulation allows researchers to develop a possible model of the 

target phenomena and then test it in action to see if its behavior matches real data 

and experience, and is also consistent in a logical sense, i.e., the entities and 

mechanics in the model behave as expected. If the design results in behavior that 

runs contrary to the intention of the model, such as static behavior when dynamic 

phenomena are being modeled, or if there is a lack of expected interaction between 

entities, these are problems with the model itself. With complex phenomena, such 

problems may only become obvious through experimentation of the model in 

various scenarios, thus this is not a trivial step in this kind of research. 

 

Figure 1: Model of drinking transitions 
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A deterministic model for binging 

Let k{1,2,3} denote the state of each individual, where 1 is for NB, 2 is for OB and 

3 is for FB. Let the location of each individual s in the grid be denoted by (i,j) and Ns 

= Nij show the neighborhood of (i,j). We assume 1 ≤ Ns ≤ 4. For each individual (i,j) 

in the grid we define Cij(t) as the social counter of the individual (i,j) at time t. 

Suppose s is of type k' for k'{1,2,3} and vkk' denotes the values of the social 

influence of an individual of type k on s in the neighborhood Ns. Then we define 

 





ijNk

kkijij vtCtC ')1()(   

The parameter  is a randomly determined value with a normal distribution centered 

on zero. Using Figure 1 values of vkk' are α > 0 or β < 0 based on the type of 

surrounding neighbors. 

Rules: 

We assume that at the initial state Cs(t)=0 for each cell s in the grid. 

 

Case I: s is a NB (s=1) 

 if Cs(t)<-1 for T time steps then s becomes an OB (s=2) 

 if Cs(t)<-10 then s becomes a FB (s=3) in the next time step 

 

Case II: s is a OB (s=2) 

 if Cs(t)<-1 for T time steps then s becomes a FB (s=3) 

 if Cs(t)<-10 then s becomes a FB (s=3) in the next time step 

 if Cs(t)> 1 for T time steps then s becomes a NB (s=1) 

 if Cs(t)> 10 then s becomes a NB (s=1) in the next time step 

 

Case III: s is a FB (s=3) 

 if Cs(t)>1 for T time steps then s becomes an OB (s=2) 

 if Cs(t)>10 then s becomes an OB (s=1) in the next time step 

Here T is the number of time steps needed to effect change in individuals, and 1 and 

-1 are considered as threshold values for gradually changing the states of 

individuals. The thresholds 10 and -10 are considered for major circumstances that 

force individuals to change their states to 1 or 3, respectively. 

Simulation Details 

The binge drinking cellular automata application was developed in Java, and as such 

can run on any common operating system. Many parameters can be altered, 

(1) 
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including the dimensions of the grid and length of the simulation. Currently, grids of 

roughly 10,000 cells or less are supported. Execution time for an experiment can 

vary between a fraction of a second up to one minute for large grids and/or long 

simulations (2000 or more steps). Short execution times for experiments are a 

priority since it allows for more responsive and interactive exploration of the 

configurations of the simulation. The program features tabbed output allowing 

visualization of the cellular automata itself, as shown in Figure 2, as well as plots of 

interesting metrics, including population distributions and average cell value. Plot 

functionality is supported by the versatile JFreeChart library. 

 

Figure 2: Binge drinking cellular automata 

Experimental Results 

Due to the exploratory nature of the development of this model, many possible 

configurations of parameter values and options were available for running 

experiments. The experiments described here used a 50 cell by 50 cell grid, and 

were run for 600 steps. Various options were tested on our threshold model using the 

base parameter values. Plots of the distributions of the populations of cell classes 

can be seen in Figure 3. The options tested were 

 Whether or not cells in the extreme binging categories (NB and FB) can 

change 
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 Whether initial cell values are distributed evenly across categories, or are 

distributed based on relationships found in a survey. 

Testing whether or not cells in the most extreme categories could change was 

investigated since it seemed conceivable that people entrenched in a given behavior 

would not be susceptible to peer influence. After all four possible combinations of 

the options were run, some patterns emerged. If the cells in extreme categories do 

not change, then the CA as a whole quickly becomes dominated by the extreme 

categories. Any OB cells are eventually influenced by neighbors of one extreme or 

the other, until no mid-value cells remain. If cells of the extreme values can change, 

a short initial period is characterized by a flourishing of mid-values, but these are 

soon after absorbed into large, distinct clusters of extreme value. The use of the 

survey relationships for setting up experiments had a clear effect, since NB make up 

more than half of the total population. In this case, NB eventually dominated all the 

cells if extreme values were capable of changing; if extremes could not change, the 

OB cells still overwhelmingly changed state to NB. Notably, in all of these 

experiments the extreme classes end up dominating the cell grid. 

 

Figure 3: Experiments on population distributions 
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Experiments varying the strength of influence were also performed. The strength of 

positive influences (i.e., against binge drinking) is determined by α; the strength of 

negative influences by β. They are usually set at 0.02, which allows for gradual but 

noticeable change over the lifetime of an experiment. If these values are equal, 

changing them simply alters the rate of change in the model. However, the model 

behaves differently if α and β are not equal. With α set to less than β, if extremes 

cannot be influenced, the stronger force initially converts more OB cells, but once 

there are primarily only extremes left, the effect is minimal, since the remaining 

cells are entrenched in their behavior. If extremes can be influenced, the stronger 

force wins out eventually, dominating all cells. However, converting FB to NB, or 

vice-versa, is still a slow process. Figure 4 shows two runs of the model with β 

(negative influence) higher than α (positive influence). 

 

Figure 4: Experiments on influence strength, α = 0.02, β = 0.03 

In the base model, OB have no influence on similar neighbors. One alternate to this 

is for OB to have an effect equal to α-β. Thus, they have a positive effect on each 

other if α is greater than β, and a negative effect if the reverse is true. However, this 

alternate rule simply accelerates any overall change in cell value. OB cells drift 

towards extreme values more quickly, and the overall state of the system approaches 

a steady state rapidly. This is true whether or not extreme values can be influenced. 

Conclusions 

The models included in this paper present initial exploratory experimentation that is 

part of ongoing research into the social factors associated with binge drinking 

behavior. The cellular automata approach proves to be a promising method for 

investigating peer influences as it allows for both local and global population effects 

to be considered while taking into account the dynamics of various types of social 

and environmental influences. In the current work we adopted a simple approach 

that allows us to vary the flexibility of binge drinking classifications, the distribution 

of initial behavior classifications, and the strength of positive and negative types of 

influences.  

 

            

                (a) Extremes do not change                                  (b) Extremes can change 
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Results of the experiments revealed several interesting patterns of social behavior 

including considerable variation in the speed at which individuals change their binge 

drinking habits. Such findings are encouraging at this early stage as they could lead 

to more significant discoveries in future research. For example, with further 

refinement to the model including the specification of positive and negative 

influences, the results of experimentations could lead to important policy 

implications for effective intervention strategies. It can also be used to support 

research employing more traditional methods, such as by suggesting what kind of 

questions should be asked in future surveys. We hope that this shows how 

simulation modeling can be used even during exploratory phases of research. 
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Abstract 

When we take the time to observe nature, we often are surprised by the 

complex forms and behaviours that may emerge, surprised by the self 

reproduction and the self organisation phenomena that we notice, and we are 

compelled to acknowledge how difficult it is to understand this complex nature in 

perpetual state of evolution. By analogy to this nature, this paper deals with possible 

spatial evolution by combining two spatial systems: land use and the transport 

systems. However, underlying thi s evolution, there are processes that cannot be 

easily captured through the use of simple methods/statistical tools. Nevertheless, 

thanks to the emergence in the past few decades of artificial intelligence based 

models such as cellular automata and neural network models, this paper proposes 

to simulate future spatial evolution in Luxembourg and the Greater region up to 

2020. The simulation results will act as the knowledge base which will make it 

possible to understand the functioning of complex cross-border areas. 

Introduction 

Well aware of the stakes involved in understanding the processes that lead to the 

innovation of spatial systems as well as the innovation in diffusion strategies that 

often accompany them, geographers have mobilised diverse methodological 

approaches that could facilitate better understanding of land use as well as transport 

systems. Both these systems are complex, interdependent and complementary and 

they both play a specific and instrumental role in spatial dynamics, and particularly 

in urban dynamics. 

Over the last few years, one of the most pertinent methodological approaches that 

has addressed the issue of spatial dynamics has combined land-use and transport 

systems in one single dynamic model. This approach particularly seeks 

tounderstand how transport and land use systems encroach upon each other, and 
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by doing so, determine the processes that influence land-use and land cover 

changes. Combining these two systems within one dynamic model was facilitated 

by the development of geographical information systems (GIS). However, to be 

fully aware of the spatial and temporal dynamics of these structures, it has been 

necessary to combine the GIS with artificial intelligence models such as cellular 

automata [1] or neural networks [2]. 

Cellular automata are known for their ability to model spatial interactions at 

different spatial levels (macro and micro) [3] [4]. Neural networks on the other 

hand have the advantage, when combined with cellular automata, of facilitating the 

development of spatial transition rules, and in particular, when these rules must 

take several types of land use classes into account [2]. Moreover, neural networks 

make it possible to determine the model’s parameters. Nevertheless, the challenges 

associated to this type of hybrid model are at three levels: (1) definition of the 

evolution rule, (2) model calibration and (3) model validation. 

This contribution seeks to provide a better understanding of the stakes, challenges 

and opportunities arising from a hybrid model and is structured around three main 

sections. The first section describes key insights and places our research within 

the context of previous studies on cellular automata and neural networks. In parallel, 

it makes explicit the advantages of CA models in geography and spatial modelling. 

Section two focuses specifically on the data and the methodological approach. It 

shows how machine learning algorithms like neural networks are designed as 

development models for cellular automata transition rules. The third section 

addresses the application of a neural-network based on cellular automata in 

Luxembourg and in the areas adjacent to its borders. This last section draws 

conclusions and proposes discussion around this hybrid model while placing a 

strong emphasis on the innovative aspects, perspectives, as well as on the issues that 

need further development in order to improve the model and optimise the results.  

1. General background and related work 

1.1. Cellular Automata based model as a framework for urban modelling 

Scientists such as Alan Turing [5], Stanislaw Ulam [6], John von Neumann [7], and 

later John Conway [8] contributed to the cellular automata theory which considers 

cellular automata to be universal and complex tools [9]. The current paper goes 

beyond the tool factor and considers cellular automata as appropriate for modelling 

dynamic processes of complex systems and formalising them through a “bottom-

up” approach. This approach considers that it is at the local level, via a well 

defined (local) neighbourhood, that complex structures at the global 

neighbourhood level arise. The interaction between local and global 

neighbourhoods is what led to the popularity of cellular automata in geography as 

from the 1970s. The famous law of the American geographer Waldo Tobler: 

Everything is related to everything else, but near things are more related than 

distant things [10], accompanied later by his vision of space as a grid of cells [11]-

law and vision that would be taken up by other geographers [12] [13] [14]-marked 

the beginning of an interest in the cellular automata concept in geography and urban 
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planning [15]. However, it was the development of geographical information 

systems (GIS) which, through raster data formats, would facilitate comprehension 

[16] as regards cellular automata and urban simulation [17] [18]. While simulating 

land-use changes, the existence of multiple classes makes it difficult to set up 

transition rules based uniquely on elementary cellular automata. If the classes are 

binary (built-up land and not built-up land) a simple rule can be easily applied. But 

if additional classes as well as variables are taken into consideration, setting up a 

transition rule becomes complex. To alleviate this difficulty, some researchers have 

proposed more complex cellular automata [19] [20] or have used machine learning 

methods such as the support vector machine [21] and neural networks as the basis 

for generating transition rules of cellular automata [2]. 

1.2. ANN as the framework for CA model transition rule 

The neural network model was developed parallel to cellular automata, and, like its 

predecessors, belongs to the family of artificial intelligence models [22]. As 

opposed to cellular automata, neural networks are not bound by a grid of regular 

cells. Theoretically, they are capable of accomplishing complex probabilistic, 

logical and mathematical functions. This is possible as their architecture (Figure 3) 

is based on a finite set of relations, connections, connectivities, interconnections and 

feedback loops (for more complex neural networks) between neurons, in a random 

manner [2]. Neural networks have a large capacity to learn data regardless of its 

quality, as well as the ability to grasp complex non linear input-output relations in 

the modelling process. They have different properties. (1) The neural network is 

constituted of a directed, weighted graph in which the nodes represent (2) the 

neurons. Each layer/group of neurons has what is known as an (3) activation 

function. It is this activation function that leads to neuron interconnectivity and also 

allows a neuron to influence other neurons. The connections between neurons are 

known as synaptic connections which are responsible of diffusing weighted neural 

activities also known as the synaptic weights. These synaptic weights are optimized 

by the (6) the learning algorithm, an additional property of neural networks which, 

through their analogy for living biological networks, simulate brain synaptic 

plasticity. The synapses’ concept is fundamental in neural networks as it is on the 

basis of what we call synaptic coefficients (defined in the learning phase) that the 

network is calibrated. In our opinion, while synapses can be considered as 

transmission and/or information reception channels, neurons represent “zones” 

where the information transmitted or received by the synapses is stocked. 

 

1.2.1. Why ANN? : Utility in land use changes and CA-based model 
 

This section highlights the reasons that led us to use neural networks as the basis 

for generating transition rules for cellular automata. 

The first reason is linked to the networks’ ability to simulate complex functions due 

to their capacity to extract patterns from data and learn them thus, to facilitate the 

capturing of complex non linear relationships between different input variables and 

the output in an explicit manner. As we are well aware, land use is one of the most 

complex global spatial systems and this is linked, among other things, to (1) the 
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existence of numerous land use classes; (2) to the complex and non linear 

relationships between the classes (action, interaction, feedback loop); (3) to the 

existence of dependent, independent and interdependent variables which influence 

directly or indirectly the evolution of the land-use structure. Understanding this 

evolution and the changes in particular, implies that simulation and spatial 

modelling frameworks must take into account a variety of parameters. In addition, it 

is necessary to emphasise that the more the land use class categories, the harder it 

is to understand the lan d-use changes through spatial modelling. As a consequence, 

on the basis of this complexity, the simulation of land-use changes becomes one of 

the most arduous modelling tasks. This complexity cannot be captured through 

elementary cellular automata. The second reason is linked to the difficulty in 

determining transition rules in cellular automata. Neural networks offer a very 

attractive alternative in generating transition rules [2]. The latter is one of the 

most difficult characteristics to define in the cellular automata model especially 

when inputs are numerous and share a particularly complex relationship. The third 

reason is that neural networks have been successfully applied in Geography [23] 

[24] and compared to other models (e.g. Logit, SVM) neural networks produce 

better results [25] [26]. However, as in all artificial intelligence models, neural 

networks have shortcomings primarily based on the time factor which is necessarily 

important for setting up the model’s parameters for convergence as well as for 

generalisation. In addition, it is often very difficult to find a “theoretical 

framework”/ an empirical explanation of the “interaction decision” between the 

neurons. Why is a neuron attracted to a particular neuron and not to another? It is 

nevertheless certain that the decision to interact leads to the emergence of complex 

structures with each passing moment, and in a non linear manner. 

 

1.2.2. Details of the transition rules 

 

This section gives details of how transition rules function. It also explores ANN’s 

potential for CA-modelling. The transition rules presented here allow us to 

investigate possible land use changes of the study area between 2000 and 2020. 

Basically, the neural networks model functions in three phases. The first phase is 

relative to the construction of the model’s structure on the basis of a database 

randomly split in two phases: the training phase and the testing phase. The second 

phase concerns network configuration based on the training data. During the 

first phase, an algorithm known as the learning algorithm is mobilised to serve 

as a weight optimization tool for the different synaptics connecting the network 

nodes. This algorithm is fundamental as it determines the learning capacity of the 

model. Learning is complete only when the algorithm has attained what we call a 

stable state. The recognition phase is the last phase. We could also speak of 

the network’s restitution phase. This refers to analysing, in relation to the inputs 

injected into the model (input layers); whether the outputs correspond to expected 

outcomes (output layers). This step is also relevant in verifying the model’s 

generalisation capacity. 
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Below is an example of a standard algorithm, the “multilayer perceptron” (ANN-

MLP) with the standard back- propagation learning algorithm used to develop the 

model transition rules and the model’s structure. The standard Back- propagation 

consists of minimising, using the gradient descent method, the mean square error 

given by: 

 

Where   
  and   

  are respectively the desired and the actual outputs for the jth 

neuron, n p is the number of patterns in the training data set and nL is the number of 

output neurons.   
  is given by: 

 

 

Where       denotes the number of corresponding layer S,    
  is the threshold 

(or bias) of the jth node in the layer l,   
    is the input coming from the previous 

layer. In equation (2), the sigmoid has been chosen as the activation function. 

The gradient descent method consists of minimising the error by updating the 

weights. The training ends after reaching an acceptable error or when processing 

the maximum number of iterations. The weights are updated using equation (6), first 

the error signals of the output and the hidden layers should be calculated and, 

subsequently, they are given by: 

 

For the output neurons: 

 

For the hidden layers: 

 

The weights in the hidden and output are updated using the following equation: 

 

Where α denotes the learning rate, generally α   [0,1]. The bigger is the learning 

rate the faster is the training. A big learning rate may produce an unstable training 

process. 
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Below is presented the algorithm of an ANN-MLP trained using a “standard 

backpropagation algorithm” algorithm for a neural network with one hidden layer. 

1) Define the network structure, assign initial weights randomly. 

2) Chose a pattern to process. 

3) For each node in the hidden layer 

evaluate the linear (1) and nonlinear outputs (2). 

4) For each node in the output layer 

i. using the results of step3, evaluate the linear (1) and the non linear 

outputs (2) 

ii. calculate the error signals (4) 

5) For each node of the hidden layer 

evaluate the error signals (5) 

6) Update the weights of the hidden and output layers (6) 

7) Repeat steps 3 - 6 for all patterns 

8) Evaluate network error as well as the stopping criteria. If stopping criteria is not 

reached, repeat steps 2-5. 

2. Materials and Methods 

2.1. Study area, main inputs and data sources 

Our case study area is Luxembourg and the greater region that constitutes a part of 

French (Lorraine), Belgium (Wallonia) and German (Rhineland-Palatinate and 

Saarland) territory, corresponding to a total population of more than 11 million 

inhabitants, that is, 3% of the EU-15 Member States’ population covering 60 401 

km². Thus, using a 100m×100m (one hectare) as a spatial resolution led us to deal 

with a grid of more than 6 million cells. The Greater region over the past few 

decades has become one of the most attractive regions in Europe [27] with 

Luxembourg emerging as an economic engine; this country comprises 

approximately 500 000 inhabitants and covers 2586 km². Even though 

Luxembourg is a small country, it has positioned itself as a “real core” within the 

European Union due to a strong economy that is primarily based on finance and 

industry. This economic strength impacts the migration flows which result in 

significant residential and daily mobility [ 28]. 

Different factors characterise the model’s inputs. The first input is land-use in 1990 

and in 2000, based on the Corine Land use classification in 100-m resolution [29]. 

Five land-cover classes are used for simulation; these are urban, industrial, water, 

agriculture and forest (table 1). It is at the land-cover level that we find interactions 

and feedback mechanisms between the different land-cover class categories. The 

second input is the physical factor which we refer to as slope map. It is given as a 

percentage calculated using a 100-m resolution Digital Elevation Model (DEM) 

[30]. The third input is related to the transport network which will enable us to 

evaluate the potential impact of the network on urban dynamics and to measure the 

distance from the cell to the given infrastructure (Table 1). In addition to these 

different inputs, we have used the Moore neighbourhood which comprises a grid of 

regular cells with a 3×3 window where each cell has 8 neighbours (table 1). As a 
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first step, the inputs of the cellular automata model are generated externally. In 

more precise terms, they are generated using a Geographical Information System 

tool (ARC-GIS-10 in this case) and Java before being “learned” by the neural 

network. They are then integrated in the cellular automata as is shown in figure 1 

which gives precise details on the conceptual modelling approach. 

Table. 1. Description of the model’s inputs 

 

 

Figure 1. Conceptual CA based neural network model 

2.2. Data preparation for model calibration and learning database construction strategy: 

Table 2 summarises the data base for the periods 1990 and 2000 used for 

simulation. Different types of evolution are elucidated: increase, decrease or no 

change at all, as is the case with the transport network which remained unchanged 
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due to the fact that there was no new highway between the period 1990 and 2000. 

While growth is experienced in some of the land use classes such as the urban and 

the industrial classes, other classes such as agriculture and forest register a slight 

decrease. This decrease can be explained by the fact that the growth of built-up 

surfaces (industrial and urban) generally takes place to the detriment of 

undeveloped zones such as agricultural or forested areas. The class representing all 

the humid (water) zones registers very slight growth. This growth cannot be easily 

explained, but this could be as a result of measurement errors or of flooding which 

could have occurred during the two periods studied. While table 2 highlights the 

reality of the class evolutions observed between 1990 and 2000, table 3 presents 

the second phase which consists in cleaning up the data so as to ensure model 

convergence within minimal calculation time. This is known as the screening 

process and it makes it possible to eventually work on a real screened base of 71422 

observations. To better adjust the model, it is essential to optimise the learning 

database. The simplest way to achieve this is to proceed by random sampling (50% 

of observation for the learning database and 50% for the testing phase) from the 

entire data base. However, in the case study presented here, a 50/50 random 

sampling is not ideal; on one hand, we run the risk of not taking into account the 

under represented classes which nevertheless determine the changes and the urban 

dynamics as is the case for urban and industrial classes, and on the other hand, we 

could under-estimate their role in the realism of the model. Subsequently, to attain 

the objective of a realistic model, we propose a learning database construction 

strategy. This consists of targeted sampling (table 4) concerning the urban and 

industrial classes, thereby guaranteeing their representativity in the calibration 

phase. To avoid choosing one particular division (vagaries), the base division 

screened in two parts (training phase and testing phase: the construction method is 

described here below) is repeated n times. This mechanism is known as cross-

validation and it makes it possible to validate the model. 

Table 2. Land use and transportation statistics (proportion) in observed periods 1990 and 2000 

 

In the neural model, determining the number of units in the hidden layer is essential 

as the efficiency of the model depends on this parameter. To find the “optimal” 

number of units, we vary the number of units in the hidden layer between 2 and 20, 

and then select the number that minimises the error rate. The ANN-MLP model 

is repeated 10 times in order to estimate the error variation (mean and standard 

deviation) depending on the number of units (figure 2). 
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Figure 2: Architecture of ANN-MLP (outputs: V1, V2, V3, V4 correspond respectively to 

urban, industrial, agriculture and forest at time t1=2000; inputs: V5, V6, V7, V8, nbbus: 

number of bus stations, nbtrain, nburban, nbindustrial, nbagriculture, nbforest, nbwa ter, 

nbtransport, slope, dist_bus_station, dist_train_station) correspond to all variables/outputs at 

time t0=1990 ; described in table 1. 

Table 3. Summary of land use classes, in the dataset, in observed periods 1990 and 2000 
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Table 4. Summary of land use classes, in the dataset, after cleaning 

 

In the table below (table 5) (confusion matrix), we present the prediction results 

(ANN-MLP (h*=4)) for the testing phase. This matrix makes it possible to merge 

the observed and the predicted data. The overall rate of correct prediction is 

88.76%. 

Table 5: Confusing matrix from ANN-MLP model using test dataset 

 

Note: Accuracy and reliability are two common measures obtained from the 

confusion matrix (details are given in the next sub -section). The diagonal 

elements in the matrix represent the number of correctly classified pixels of each 

class and the off-diagonal elements represent misclassified pixels or the 

classification errors. 

2.3. Kappa index method for land use accuracy assessment: preliminary analysis 

We have used the Kappa Index of Agreement (KIA) method to validate the model 

[31] [32] [33]. This method allows us to show the agreement between observed and 

simulated accuracy/data. The table 6 represents the confusion matrix of the observed 

and the simulated data for the period 2000. The diagonal of the matrix represents the 

number (also expressed as a percentage) of the accurately predicted cells. The 

values outside the diagonal represent the simulation errors for the period 

2000. The results represented in table 7 generally confirm a good model calibration 

and show the model’s capacity to replicate the observed reality, that is to say, the 

situation in the year 2000. 
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Table 6: Confusing matrix between the observed and the simulated land uses in 2000 (in %) 

 

Note: For the confusion matrix table we have used the value of 0.44 as the cut off 

threshold. This threshold allowed us to calibrate the model: we assign the cell the 

land use class with maximum probability if this maximum probability exceeds the 

given threshold and if not the cell keeps it previous state. 

Kappa Index of Agreement (KIA) for Overall Kappa: 

KIA=(po–Pc)/(1–pc)  (7) 

where, po represents the observed accuracy or the proportion of agreement. pc 

represents the chance agreement. 

Kappa Index of Agreement (KIA) for the category Kappa: 

KIA =  (pii - pi * pi) / (pi - pi * pi)  (8) 

where, Pii represents the proportion of unit agreement in row [i] at column [i]. Pi 

represents the proportion of unit agreement for expected chance agreement in row 

[i]. 
As regards the Kappa results, table 7 presents two types of results. One shows the 

model’s performance in relation to the entire database studied, that is, the overall 

result based on equation (7) and other more detailed results which show the same 

model’s performance in different land use categories base on equation (8). The KIA 

results range from 0 to 1 where the values 0 and 1 signify respectively, poor and 

perfect agreement. Globally speaking, as table 7 has shown, there is an almost 

perfect agreement between the observed and the simulated situations (table 7). 

Table 7: Detailed Kappa results, overall and per land use class 

 

Land use maps are considered to be categorical maps and consequently, the kappa 

index and other derivative approaches (eg. Fuzzy set approach [34]) are thought to 

be useful methods for assessing the similarity between observed and simulated 

datasets [35]; [36]. However, the kappa method has been highly criticised for 
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failing to distinguish whether land use/cover class changes during the transition 

phase are drastic or not. Moreover, regardless of the level of change that a given 

land use/cover class undergoes, the values remain extremely high. This is 

problematic when simulating territories where the urban system is far from 

equilibrium (in other words, a city with a phase of exponential urban growth). 

However, when simulation is carried out in spaces where the urban systems are in 

equilibrium (urban and/or constant growth) as is the case in most European cities 

where anticipating exponential urbanisation is no longer feasible, using the kappa 

index remains a valid and interesting method to distinguish the differences between 

observed and simulated situations. This method is also valid when comparing results 

within a comparable study area, in other words, a similar study area. However, even 

though the results are good in general, the kappa index remains inadequate as a 

validation method and must be compared with other methods of validation. It is for 

this reason that we propose, in a more detailed contribution, to use other validation 

alternatives based on existing models that have already been tried and tested such as 

Receiver Operating Characteristic (ROC), cross validation or the pattern based 

analysis (eg. cluster analysis [37]). 

3. Simulation results 

The analysis of the results shows that the automata based neural network model 

presented in this paper functions well in general. Indeed, table 8 which 

summarises the observed and simulated results up to 2020 shows reasonable 

results concerning the evolution of each land use class as well as coherency in 

simulation. Some of the land use classes expand to the detriment of others. This is 

the case of the urban and industrial classes over the agricultural class (Table 8). 

This table also shows that relationships between land use classes appear to be 

very complex. This is especially true for the urban and the industrial classes 

which are sometimes difficult to dissociate. Both classes represent artificialised 

areas and often interconnect in order to constitute continuous, discontinuous or 

mixed settlements, a fact that complicates spatial modelling. In addition, even if 

these two classes are interconnected, they do not have the same level of influence 

over each other because, if it is true that an industrial class can “easily/frequently” 

become an urban zone (after a decrease in industrial activities in a region for 

example) the contrary is less frequent. The results also show that if the expansion of 

urban and industrial classes was continuous, it became stable with time. This can be 

easily explained: the land reserves which were available 20 years ago and which led 

to a dispersed urbanisation no longer exist. In addition, as the cartographic results 

show, urbanisation in 2020 only points to a continuation of previously observed 

trends and is located in already urbanised areas as well as along transport axes 

(Figure 4). 

Actually, urban growth is particularly significant around transport 

infrastructures. Undoubtedly, interdependence exists; urban growth is stimulated 

by the presence of a transport infrastructure and depends on the distance of the land 

use class from the transport infrastructure in question (Table 1). The neural 

networks as well as the cellular automata seem to have effectively highlighted 
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this interaction between these two complex systems namely land use and transport 

networks. Moreover, this urban structuring around transport axes explains (Figure 

4) the metropolitan urban organisation of the Greater Luxembourg in different axes/ 

parts of the territory. A first, highly urbanised, North-West axe corresponds to the 

Belgian part of the territory. It is here that we find the largest urban areas such as 

Liège or Charleroi. Next, there is a second Centre-South axe which corresponds to 

the Luxembourg and French part of the study area; with linear urbanisation, it is 

also represented by large urban centres such as Luxembourg, Metz and Nancy. 

Finally there is a third axe that is less linear which corresponds to the German-

Luxembourg part of the Greater Region with the polarised area on the German 

side through Saarbrücken. Close to the polarised areas, there is a large urban sprawl 

over the whole territory. Generally speaking, most of the urban growth takes place 

on desirable spaces, that is to say, spaces well adapted for urban growth as they 

have less steep slopes (Table 1). Nevertheless, it is important to highlight the fact 

that even if there are higher levels of urbanisation in this region, forested and 

agricultural lands take up most of the territory (Table 3 and table 8). The simulation 

results also confirm that, in addition to the transition rules (good 

convergence/coupling between CA and ANN), the cell states and the neighbourhood 

configuration, the influence of spatially roads and there derivative distances are also 

fully determinant in cellular automata based models and can induce urban growth 

[38]. 

However, as regards figure 4, by comparing the different situations taken into 

account (observed and simulated situations in 2000), it appears that the model 

indicates a highly urbanised zone which was inexistent in the situation observed in 

2000 and which will persist until 2020. Several questions arise: why is this urban 

growth situated at this level (and not elsewhere) of the study area? Why will it 

persist up to 2020? Why is the urban class that is hardly present in this area 

overestimated and not the forest class which is very close-by and which also 

dominates this particular part of the territory? Is it due to the fact that the forest 

class is located on a highly steep slope considered to be repulsive to urbanisation? 

We can propose a few answers but these must be treated with caution. First, as 

regards the model, and more specifically at the model calibration level which uses a 

neural network which clearly overestimates urbanisation in this part of the 

territory compared to the situation observed. This suggests that the neural network 

proposes a stronger attraction between the urban class and the agricultural class than 

with the other classes in the immediate vicinity and that it is undoubtedly necessary 

to stabilise the connections between the urban class and the agricultural class so as 

to maintain over time a more realistic model. However, this does not explain why 

we observe this here and not elsewhere. This calls for further reflection and 

discussion in our current and future research projects. Secondly, beyond the model, 

it appears that this urban growth, even though nonexistent in the situation 

observed, is not unrealistic as it takes place close to a vast transport network 

where the industrial classes are also located. Moreover, this urban growth (which 

is discriminatory) takes place to the detriment of agricultural spaces as the latter 

are highly desirable and favourable for urban development (high suitability area for 
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urbanisation). This is a phenomenon that we have observed in our different studies 

and which is a daily reality in our regions. 

Table 8: Simulated land use changes by class in hectares (%) 

 

 

Figure 4: Cartographic simulation results: The Greater Luxembourg in 2020. 
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4. Conclusions and discussions 

The results presented in the different tables show that the relationships and 

interactions between the different land use classes are often complex and difficult 

to understand. All the classes do not function in the same manner and some 

classes have an impact on the development of others. This is especially true for the 

urban and industrial classes; for example, the majority of the growth observed in 

industrial and urban classes occurs to the detriment of agricultural classes. 

Ultimately, what the model developer seeks to achieve, regardless of the model 

used, is to simulate land use changes, is to emphasise/reproduce real urban 

structures/patterns. 

The paper presents a model which integrates neural networks into a cellular 

automata model and shows that these two tools are complementary and able to 

provide significant results for analysing complex systems. However, it is still 

extremely difficult to calibrate this type of model even if its structure appears to be 

simple. Moreover, taking into account several variables in addition to the land use 

classes accentuates this difficulty and lengthens the time necessary to implement the 

model. The neural networks in this work made it possible to: (1) elaborate cellular 

automata transition rules, to (2) determine the parameter values, (3) to make a non 

linear prediction of the land use changes all the while (4) minimising the input level 

errors of the model. However, this type of model raises questions: Are we really 

in the presence of a cellular automaton? Would it not be more appropriate to 

speak of a Neural Automaton (NA)? In future studies, we hope to improve the 

model by applying, for example, other validation tools such as the multi-class 

Receiver Operating Characteristics (ROC). Taking into account new variables, such 

as population, distance from the border, could, in the near future, make it possible to 

better analyse the robustness of the model. Finally, to better understand the urban 

phenomenon in the Greater Region, we will also consider the integration of 

variables such as suitability maps in order to get around the problem of zoning 

unavailability (impossible to attain in such broad border cases) on one hand and on 

the other, we will propose an urban development of the Greater Region and of 

Luxembourg which is as close as possible to the reality. 
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Abstract 

West Africa faces rapid population growth and subsequent demand for food 

production. Despite increasing demand, local farmers still follow traditional practice 

and to overcome low productivity, continuously expand cultivated areas. To 

estimate the consequences of this process we developed a spatially explicit agent-

based ALADYN model of agriculture land-use in the savannah around Kita, Mali. 

The model is based on the remote sensing data on the agriculture land-use in the 

Kita area, Mali and field surveys there. The ALADYN simulations clearly 

demonstrate that traditional agriculture is not sustainable. Even under the optimistic 

scenario of declining rate of population growth, the current agricultural practice 

results in including all available lands into agriculture towards 2015-2025. The 

agriculture production thus reaches its maximum and from then on, every household 

will experience, every 15-20 years, a period of 1-3 years during which field fertility 

will be too low for allowing cultivation. Emigration will be the only way to avoid 

starvation in these circumstances. The model highlights the great need for new 

agricultural practices in West Africa. 

1. Land degradation in West Africa  

The West African environment is believed to undergo a continuous crisis due to an 

excessive population pressure. According to previous studies in the region [1-4], 

degradation of croplands is most extensive in Africa. Land degradation and decline 

of soil fertility lead to decreasing yields and low food production in farming systems 

of Sub-Saharan Africa [5], where agriculture remains the main engine of the 

economical growth of these countries [6]. We investigate these processes in Mali, 

where current annual population growth is close to 3% [4, 7] and food sustainability 

in the nearest future may be at risk. 

Since the late 1950s, production of cotton has increased immensely in West Africa 

and specifically in Mali, which is today the largest producer of cotton in Sub-

Saharan Africa [4]. Cotton cultivation in Mali takes place in rotation with cereal and 

groundnut. The typical cycle begins with a year of cotton cultivation followed by a 

mailto:bennya@post.tau.ac.il


Grinblat et al., Simulating land-use degradation in West Africa 

178 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 

year of cereal (sorghum, millet or corn), and an additional year of cereal or 

groundnut [8]. Whereas cereal is cultivated for domestic use, cotton is planted to 

provide cash, while the groundnut serves for both cash and domestic use. During 

cultivation, manure and chemical fertilizers are added to the fields, however not 

consistently. They are added primarily for cotton cultivation, mostly containing the 

major nutrients of nitrogen (N), phosphorus (P), and potassium (K) [8]. 

Extensive agriculture aimed to support the constantly growing population needs 

leads to low productivity of soils[9]. Soil in most parts of Mali is sandy-textured, 

characterized by the lack of significant soil profile. Following wind erosion soils 

may intermingle with basement rocks or indurate iron stone [10]. Given their 

excessive permeability and low nutrient content, agricultural use of these soils 

requires careful management [3]. 

In order to avoid exhaustion of the soil, farmers in Mali used to divide their land to 

2-3 fields: While one is cultivated, the others are left fallow until regaining fertility. 

Recent observations reveal that Malian farmers intensify land-use by reducing the 

period of time that the lands are left fallow between cultivation periods, thus 

decreasing an overall fraction of the fallow lands. In parallel, the use of chemical 

fertilizers is still low [8, 9]. More and more lands are approaching the threshold 

fertility level, below which the agriculture production becomes essentially 

vulnerable [8]. The only way to ensure food production in this situation is to 

cultivate the lands that are further away from the settlement and are not yet included 

in the agriculture cycle. 

To investigate the limits of the current agricultural practice, we have developed 

Agricultural Land DYNamics (ALADYN) model and employed it for assessing soil 

degradation given current population growth and agriculture practice. ALADYN 

belongs to a class of spatially explicit agent-based (AB) model that explore 

relationships between changes in socioeconomic parameters and changes in 

landscape pattern [11, 12] and are increasingly being used to simulate land use/cover 

changes [13-15]. ALADYN is based on the field research of soil degradation in Kita 

area, in 2004 and 2006, and on the space borne data of the Kita area during 1976– 

2004 [8]. 

2. Conceptual model of land degradation in Mali 

Conceptual model of soil degradation in Mali was introduced by Kidron et al. 

(2010). They studied the relations between the soil organic matter (SOM), the major 

nutrients (N, P, K), and cotton yield and evaluated the rate of soil degradation. 

Since 1960s, the CMDT (Compagnie Malienne pour le Développement des Textiles) 

company controls cotton production in Mali, and supplies chemical fertilizers to 

farmers. In 1981, the Malian government signed an agreement with the International 

Monetary Fund and the World Bank to join the structural adjustment program that 

led to a dramatic reduction in subsidies for the chemical fertilizers and immediate 

reduction in their use [4, 16]. This drop further promoted the expansion to new fields 

and accelerated soil degradation. 

According to Kidron et al. (2010) soil fertility is defined by the amount of SOM in 

soils and the threshold below which a field becomes unproductive is ca 18 t/ha. 
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Kidron et al. (2010) have estimated the rates of SOM degradation in the cultivated 

fields and the rate of SOM restoration in the fallow field: the rate of SOM 

restoration is lower than that of the degradation during cultivation. With the help of 

simulation model, Kidron et al. (2010) have demonstrated that if the farmers are not 

able to extend their lands, then each of their fields eventually enters the land-use 

cycle characterized by the 10 - 12 years of cultivation and, then, 12 -16 years of 

fallow that are necessary to restore the SOM in the field. The period of 12-16 years 

is, however, insufficient for the full restoration of field’s fertility and, as a result, all 

family fields simultaneously become unproductive after 25-30 years of the land-use 

and the farmer is forced to leave the lands for 1-3 years, until fertility of one of them 

will be regained. These results fit to Kita’s reality, characterized by gradual 

expansion of the cultivated lands. This is the aim of this paper is to develop and 

evaluate spatially explicit model of agriculture land dynamics in typical for West 

Africa, Kita area, and to employ the model for investigating the sustainability of 

traditional agriculture there. For this end, we exploit remote sensing data and data on 

soil degradation and combine them within the framework of an agent-based spatially 

explicit model of agriculture land-use. 

3. Land-use dynamics in the Kita area during last 30 years 

3.1 Site description 

Our research site (~26x26 km) is located to the northeast of Kita (Figure1). The area 

is characterized by geographical inter-tropical climate with a dry season and a rainy 

season that makes the agriculture rain-dependent. Precipitation in the area is about 

800 mm, falling mostly between May and November. The geomorphology is that of 

a plain with low hills and narrow valleys. The natural landscape represents grassland 

and bushes with scattered individual trees that is described as a savannah type [17]. 

Agricultural fields are located in the flat areas, while the rocky areas are unsuitable 

for agriculture. 

 

Figure1: Test site in Kita, Mali 
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3.2 Analysis of remote sensing data on agriculture land-use in Kita area 

To investigate the dynamics of the agricultural land-use in the Kita area we rely on 

remote sensing data. The cultivation period of cotton begins with the onset of the 

rainy season and continues until the first two months of the dry season. It is difficult 

to detect cropland by remote sensing techniques during the cultivation period - both 

because of cloudy sky and continuous vegetation cover. We therefore identified 

cultivated fields with the images taken after the harvest, when the fields appear as 

bare soils. Fallow fields are identified as those that were cultivated in the past but 

are currently covered by savannah vegetation. 

Two sets of multi-spectral satellite images were used in the analysis (Table 1). The 

first consists of Landsat MSS, TM, and ETM+ images taken in 1976, 1985, and 

2003, in the middle of the dry season (February and March). The second, QuickBird 

image for 2004 (February), was employed for verifying the Landsat-based 

classification. The Landsat images were initially geometrically corrected (L1G 

product), and we further corrected them radiometrically and atmospherically. 

Table1: Characteristics of Landsat and QuickBird multi-spectral sensors 

 

QuickBird image facilitates visual identification of the landscape objects that are 

necessary for our research, such as individual trees, bushes or agriculture 

constructions [18]. Based on the visual interpretation, we constructed a vector land-

use map for 2004, with each parcel classified as a fallow field, cultivated field, or 

non-agriculture. The band features of the QuickBird and Landsat sensors are similar, 

and we thus used the QuickBird signatures of fallow and cultivated fields for 

supervised classification of the Landsat images.  

First, we employed maximum likelihood algorithm to construct binary maps of 

agricultural/non-agricultural areas. The areas classified as agriculture in any of these 

maps were considered as “suitable” for agriculture and, based on three Landsat 

images, three maps of land suitability for agriculture for 1976, 1985, and 2003 were 

constructed. The pixel is marked as suitable for agriculture if classified as 

agriculture in any of these maps (Figure 2). Vector layers of settlements and road 

networks in 2003 were then overlapped with this map and served as a basis for 

simulation of agricultural land-use dynamics.  

Second, to distinguish between the cultivated and fallow fields we employed 

Normalized Difference Vegetation Index (NDVI):  

NDVI = (NIR−red) / (NIR+red)  (1) 

System Date 
Spatial 

Resolution 
Bands 

Landsat-2 MSS February 28, 1976 80 m 
4 (green, red, NIR, 

SWIR) 

Landsat-5 TM February 3, 1985 30 m 
6 (blue, red, NIR, 
SWIR) 

Landsat-7 

ETM+ 
March 17, 2003 30 m 

6 (blue, red, NIR, 

SWIR) 

Quickbird December 4, 2004 2.4 m 
4 (blue, red, NIR, 

SWIR) 
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where  is the reflectance values in the respective spectral. The values of NDVI vary 

between -1 and +1, and generally negative NDVI values characterize water, for the 

bare soil NDVI values are less than 0.1, and for the vegetation greater than 0.16, 

depending on the vegetation density [19]. 

To separate between cultivated and fallow fields we estimated the value of NDVI in 

the cultivated and fallow fields that were visually recognized on the QuickBird 

image and then marked at the same part of the Landsat ETM+ image. The values of 

NDVI below 0.176 in the ETM+ image that was taken in February represent bare 

soils, and we interpreted these areas as cultivated fields that had been harvested 

short time before the image was taken. The fallow fields are covered in February by 

vegetation and the NDVI value over these fields in the ETM+ image is above 0.176. 

 

Figure 2: Lands suitable for agriculture in Kita area, overlapped with the layers of settlements 

and roads. 

It is important to note that different sensors are sensitive to different wavelengths 

and thus, systematic bias of the NDVI values derived from the Landsat images taken 

in different years has to be corrected. According the calibration study of [20], the 

NDVI from the Landsat sensors employed in 1976 (MSS), 1985 (TM) and 2003 

(ETM+) can be standardized as follows: 

NDVIMSS=0.924 * NDVIETM+ + 0.025  (2) 
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NDVITM=0.979 * NDVIETM+ + 0.002  (3) 

Applying this correction to the threshold value of NDVI as established for the 

ETM+ images, we obtain the NDVI thresholds for distinguishing between cultivated 

and fallow fields: 0.187 in 1976, 0.174 in 1985, and 0.176 in 2003 and obtained the 

maps of three land-uses: non-agriculture, cultivated, and fallow (Figure 3). 

 

Figure 3: Classified land-use maps in Kita region, Mali, by years 

We estimated the accuracy of our classification with the error matrix [21, 22] 

obtained by comparing the land-use maps derived from Landsat ETM+ and 

QuickBird images. The estimates of the overall accuracy and the kappa coefficient 

are 82.2% and 0.703, respectively. 

Figure 4 shows the dynamics of agricultural land-use and cultivated areas in Kita 

region. During 1976-2003, the total area that once used for agriculture has expanded 

to 28163 ha. In 1976, the share of the agricultural area was 9607 ha (or 34.1% of 

total agricultural area). From 1976 to 1985, 3193 ha (11.3%), and between 1985 and 

2003, 4121 ha (14.6%) were added. In contrast to the rapid expansion of overall 

agriculture area, the cultivated area has increased between 1985 and 2003 by 839 ha 

(2.9%).  

Figure 5 presents the total cultivated area, as a fraction of the total agriculture area 

and the area cultivated within three 1 km rings around the settlements. We consider 

three such rings, following the fact that the average distance between agriculture 

settlements in Kita is about 5 km. As for the total amount of cultivated lands, it 

expanded between 1976 and 1985 by 9% and towards 2003 by 3% (Figure 5a). By 

rings, cultivated area has expanded during 1976-1985, by rings, 1.4%, 9.8% and 

12.6%, respectively; between 1985-2003, the cultivated area expanded in the outer 

ring only (6.9%), while in the inner and middle rings the cultivated area decreased 

by 7.4% and 0.9%, respectively (Figure 5b).  
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Figure 4: The dynamics of agricultural and cultivated lands in Kita region during 1976 – 2003 

 

Figure 5: Temporal dynamics of cultivated area during 1976- 2003: (a) of entire area, as a 

percentage of the total agriculture area; (b) by rings of 1 km width from the settlements, as a 

percentage of the total agriculture area. 

Expansion of agriculture further away from the settlements is a strong sign of land 

overexploitation and loss of fertility. In what follows we employ remote sensing data 

for comparing model results to reality.  

4. ALADYN model of the agriculture land-use dynamics in Kita, Mali 

ALADYN, spatially explicit AB model simulates agricultural land dynamics as an 

outcome of the farmer decision that regard land-use and crop choice. The model is 

developed within the NetLogo modeling environment [23]. 

4.1 ALADYN’s overview 

The model is based on the field data collected in Kita area, Mali in 2003 and 2005 

[8]. The Kita area (26x26 km) is represented in the model by 30x30m grid. Each 

a) b)
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grid cell is described by island-use. Land-uses are of six types, three of which are 

non-agricultural - settlements, roads, and lands unsuitable for agriculture, and three 

agricultural - virgin fields, cultivated fields and fallow fields. In the Kita area, the 

average distance between settlements is ca. 5 km. We thus assume in the model that 

the fields of each farmer are at a distance of up to 3 km from the settlement. The 

amount of agricultural land at up to 3 km distance is that considered as its 

agricultural capacity.  

Settlement’s population consists of farmers and grows at a rate defined by the model 

scenario. If the settlement’s population exceeds settlement’s capacity for agriculture, 

new farmers migrate to the other settlements. If all settlements are full, new farmers 

can establish a new settlement at a point located at 3 km or further from any of the 

existing settlements. The fertility of the agriculture lands is characterized in the 

model by amount of SOM. 

4.2 Objects and agents in ALADYN 

Settlement is characterized by location of its center (as a cell), initial number of 

farmers and population growth rate.  

Field is spatially continuous set of land cells and characterized by the distance to the 

nearest settlement and the amount of SOM.  

Farmer belongs to the settlements, possesses fields and cultivates cotton or crop 

there. In the beginning of the agriculture season, the farmer decides on the future 

land-use of each of his fields: whether it will be cultivated and with which crop. The 

farmer decides to cultivate the field if the amount of SOM is above the threshold 

level, otherwise the farmer will leave the field for fallow.  

4.3 ALADYN structure 

The ALADYN model consists of four main modules: Initialization, Agriculture, 

Prognosis and Demography (Figure 6). After the Initialization is performed, the 

major loop is repeated until the end of the modeled period (60 year in this paper). 

Model time step is one year.  

Initialization module: Settlements are populated by farmers. The initial number of 

the farmers in the settlement is established as 60% of their number in 2003, the latter 

available from Kidron et al. (2010). This estimate is based on remote sensing data, 

according to which about 60% of the 2003 agriculture area was cultivated in 1976. 

Each farmer obtains two fields, each 1 ha in size, within a distance of 3 km from the 

settlement. One of the fields is set as being used for agriculture and the other left for 

fallow.  

Each cultivated field is randomly assigned the number of years from the start of the 

period of cultivation, between 0 and 11, and each fallow field is randomly assigned 

the number of years from the start of the fallow period, between 0 and 17. Initial 

amount of SOM in the cultivated and fellow fields depends on a year within the 

cultivation cycle/period of the fallow. We assume that the amount of SOM in the 

beginning of the cultivation period is maximally possible 43 t/ha (Kidron et al, 

2010), while the amount of SOM in the fallow field in the beginning of the fallow 

period is 18 t/ha. Then we apply formulae (4) – (6) of the Agriculture module below 

in respect to the initially assigned year of the cultivation or fallow. 
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Figure 6: Basic blocks and processes of the ALADYN model 

Agriculture module: The model simulates cotton and cereal production, by fields. 

The field status (cultivated/non-cultivated) and the amount of SOM in the soil are 

updated every year, during the years of cultivation in respect with the crop choice of 

the farmer. Based on Kidron et al. (2010), the decrease of SOM during cultivation 

and its increase during the years of fallow are described by linear equations: 

SOM decline during a year of cotton cultivation 

SOMT+1(t/ha) = SOMT(t/ha) – 2.38    (4) 

SOM decline during a year of non-cotton crop cultivation 

SOMT+1(t/ha) = SOMT(t/ha) – 1.19   (5) 

SOM restoration during a year of fallow 

SOMT+1(t/ha) = SOMT(t/ha) + 0.963   (6) 

where T denotes time in years. 

The initial amount of SOM in the cultivated/fellow field depends on a year within 

the cultivation cycle/period of the fallow. This year is assigned randomly between 0 

and 11 for the cultivated and between 0 and 17 for the fallow field. The SOM level 
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for the cultivated field is then assigned according to equations (4) and (5), assuming 

that in year 0 the amount of SOM is 43 t/ha and the cotton is cultivated. The initial 

amount of SOM in the fallow field is assigned according to equation (6), assuming 

that in year 0 the level of SOM is 18 t/ha. As shown below, 12 years is a typical 

length of the cultivation and 18 years of the fallow period. 

Prognosis module: Based on the amount of SOM in the soil, the farmer decides 

whether the field will be cultivated next year. If the amount of SOM decreases 

below 18 t/ha, the farmer leaves it for fallow. I f not, the farmer decides on the 

future crop. The amount of SOM in the fallow field is restored according to equation 

(6); the field can be exploited again if the SOM exceeds 25 t/ha.  

Demography module: The rate of the population growth depends on the model 

scenario. Below we consider two scenarios – of constant 3% annual growth rate and 

of the growth rate that linearly declines during 60 years from 3% to 1% per year. In 

the course of a time, population in each settlement may exceed its capacity. In this 

case, new farmers attempt to migrate to the one of the existing settlements. If all 

existing settlements are full, new farmers may establish a new settlement. The latter 

happens if Kita agricultural area still contains virgin lands that are suitable for 

cultivation at a distance of 3 km or more from the existing settlement and is 

accessible by existing roads. In this case, each farmer is assigned two 1 ha fields, 

adjacent to each other, as close as possible to the new settlement. 

According to the visual inspection of the QuickBird image, minimal number of 

households in Kita settlements in is six. We thus assume that a new settlement can 

be established if the virgin area suffices for at least six farmers. When all agriculture 

land is occupied, new farmers emigrate out of the system. 

We consider land-use dynamics at annual resolution and investigate scenarios for 

60-year period, 1975-2035. Parameters of the ALADYN model are represented in 

Table 2. 

Table 2: Parameters of the ALADYN model 

 

Model GUI is presented in Figure 7. 

In what follows, we employ ALADYN for investigating dynamics of the agriculture 

land-use in Kita under two different scenarios of the population growth. 

Parameter Default value 

Length of cultivation cycle  3 years 

Amount of SOM in a virgin field above 43 t/ha 

Cultivation starts when SOM is above 25 t/ha 

Cultivation stops when SOM is below 18 t/ha 

Overall area of farmer’s fields  2 ha 

Population of a settlement in 1976 (as a percentage of 

settlement’s capacity in 2003) 
80%  
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Figure 7: Interface of ALADYN model 

5. Analysis of ALADYN results 

5.1. Basic scenario of agriculture land-use dynamics in Kita 

The basic ALADYN scenario employs the parameters presented in Table 2 and 

assumes constant 3% rate of population growth. The dynamics of SOM in the fields 

of a single farmer are presented in Figure 8. As can be seen, after the first 40 years, 

the amount of SOM in the farmer’s fields stabilizes and varies between 15-25 t/ha. 

During 60 years, three periods of infertility of 1-3 year length are observed. 

Figure 9 presents the model dynamics of agriculture and cultivated area over the 

entire Kita area as percentages of total agricultural area and three experimental 

points estimated according the satellite images. As can be seen, agricultural area 

expands until 2015 and then stabilizes; the cultivated area reaches maximum 

towards 2001, and then slightly declines. Towards 2035, more than half of 

agricultural land is left for fallow. 

Generally, the cultivated area increases until ~2000 and then slowly declines; as it 

can be expected, the dynamics of the cultivated lands differ at different distances 

from a settlement (Figure 10a). ALADYN makes it also possible to estimate the 

fraction of farmers that cannot cultivate their fields due to soil degradation (Figure 

10b). 
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Figure 8: Amount of SOM in two farmer’s fields, basic scenario of 3% population growth 

 

Figure 9: ALADYN dynamics of agricultural and cultivated area in Kita during 1975- 2035, 

for the basic scenario of 3% population growth, as percentages of total agriculture area with the 

experimental data superimposed 
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Figure 10: ALADYN dynamics basic scenario of 3% population growth - (a) the cultivated 

area within rings as a percentage of agriculture area in rings; (b); the percentage of potentially 

starving farmers. 

5.2. Sensitivity to the population growth rate  

While the current annual population growth rate in Mali is about 3% [4, 7], the UN 

prognosis is that in 3-5 generations the growth rate in developing countries, like 

Mali, will decrease to 1% [24]. We thus consider an additional scenario, in which 

population growth rate decreases, linearly, from 3% to 1% during 1975 – 2035 

(0.0333% decrease per year).  

Figure 11 presents overall land-use dynamics in Kita for these two scenarios. As can 

be expected, they are both characterized by overexploitation of the agriculture land. 

a) 

 

b) 
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Figure 11: ALADYN dynamics of the total agriculture and cultivated area in Kita during 1975- 
2035, as percentages of the total agriculture, for two scenarios of population growth rate, 3% 

(black curves) and 3-1% (gray curves). 

The same is true for the land use dynamics at different distances from a settlement 

(Figure 12). In both scenarios, towards 2015, about 20-25% of the farmers should 

leave the area. 

 

Figure12: ALADYN dynamics of cultivated area for population growth scenarios with 3% 

(black curves) and 3-1% (gray curves) during 1975-2035, as a percentage of total agriculture 

area in rings within (a) 1 km, (b) 2 km, and (c) 3 km rings  and (d) the fraction of potentially 

starving farmers.  

 

 

  

a)                                                             b) 

   
c)                                                                   d) 
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6. Discussion 

Soil degradation in West Africa is a known phenomenon, resulting in a substantial 

decrease of crop yield per hectare in the second half of the 20th century [25]. In 

Niger for instance, sorghum and pearl millet yield per hectare decreased respectively 

by 62% and 12% from 1960 to 1999 [26]. At the same time, all researchers report a 

sharp increase in the cultivated land during the last decades. Thus, according to Fox 

and Rockstrőm [27] only 40% of the land was cultivated in the Yetenga region of 

northern Burkina Faso in 1973, while by 1996 it reached 80%.  

High population growth rate is the main reason of the sharp increase in cultivated 

land in West Africa. However, local factors may also contribute to this phenomenon. 

The 1982 decision of the Malian government to stop subsidizing the chemical 

fertilizers caused a sharp decrease in their use, and the farmers preferred to clear 

virgin soil for cultivation, which in turn substantially increased the cultivated area 

[28, 29]. Additionally, the use of marginal fields [25] further enforced increasing 

soil degradation [30]. Lack of available agriculture lands resulted in an increase in 

the cultivation period of the fields and reducing fallow period [28, 31]. The 

researchers agree that the current practice of agriculture and high level of soil 

degradation do now allow to decrease the size of the field or duration of fallow 

period. This, in turn, limits the options for the new farmers.  

Taking the Kita area as an example, we explore the dynamics of agriculture land-use 

with the ALADYN model. In agreement with other publications that regarded SOM 

as a key proxy for soil degradation [32-34], our model was based on the SOM decay 

during field cultivation and restoration during the fallow period. The amount of 

available land in Kita area was estimated based on the satellite data (from 1976, 

1985 and 2003), which show steady increase in the agricultural land from 1976 to 

2003 in agreement with other reports from other regions in Africa [27]. The 

potential use of fields which are close to the existing settlements is no longer 

relevant as these fields are already fully exploited towards 1985. This outcome is in 

agreement with the FAO (2010) report, according to which, since the 1990s, cotton 

yields have declined, while agricultural area has expanded.  

Assuming that the current agricultural practice will continue, ALADYN predicts a 

substantial increase in the fallow fields and a reduction in the cultivated areas, no 

matter if the population growth rate will remain at a current level or decrease in 

accordance with the UN forecast. Depending on the scenario, towards 2015-2025, 

the system will reach a persistent level of production, when less than 50% of 

available agriculture lands is cultivated, and the production is 20-25% lower than 

maximally observed. Once in 10-20 years each household should pass a 1-3 year 

period when all their fields are non-productive and this poses an extra burden on the 

economical wellbeing of the farmer household. Decrease in population growth may 

decrease the pressure but does not provide, by itself, a solution. While the overall 

agriculture lands is growing slower, the cultivated lands and, thus, agriculture 

production, remains at the same level as obtained in the model for constant 3% 

population growth. As a result, the fraction of farmers that are not able to cultivate 

their fields every year remains about 20-25% starting from 2015.  
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In agreement with previous reports [3], our model simulation indicates that current 

agricultural practice in Mali will not suffice to sustain the population. Development 

of the infrastructure by building roads may alleviate the situation by facilitating the 

expansion of more agricultural land. In addition, the adaption of new cultivation 

methods is called for.  
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Abstract 

Cellular automata (CA) models are increasingly applied for simulating land-use 

change in urban areas. However, in areas with strongly mixed land uses, like 

Flanders, Belgium, different types and intensities of human activity occur within a 

single dominant land use. This is in conflict with the discrete and dominant land-use 

states applied in CA. The direct modelling of the intensity of activities (population 

density and employment in different sectors) within a CA grid environment is an 

interesting alternative to model mixed and multifunctional land use. 

In this research, an activity-based cellular automata (ACA) model, developed by 

White et al., will be further enhanced, applied and calibrated for Flanders. It also 

uses a variable grid approach: linking with a regional model is not necessary because 

the neighbourhood is expanded to the entire modelling area. The model should be 

able to cope with the complex multi-nodal structure and messy morphology of 

Flanders, typified as it is by multifunctional land use and diffuse, fragmented urban 

development strung out along roads. 

In this paper we firstly show the results of a robustness analysis carried out to 

investigate whether the model behaves as expected under extreme circumstances. 

Secondly we propose a method to compute and store distances between cells in the 

variable grid ACA. This calculation should be based on the existing transportation 

network rather than on simple Euclidian distances applied in classical local CA 

neighbourhoods. 
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Introduction 

Classical CA, like other land-use change models, have strictly discrete land-use 

categories – one cell is in one state. Regions with mixed land uses, like Flanders, 

Belgium, however are better served by a model with distinct activities (population 

and economical activity per cell) instead of fairly abstract land-use types. Population 

and jobs can indeed grow gradually within most types of land uses even when the 

dominant land-use does not change. Many applications focusing on economic and 

environmental problems will also benefit from more detailed information on the 

location of activities. Multi agent systems (MAS) can predict direct interactions 

between actors but are not useful for large regions as they are computationally slow 

[1]. Therefore activity-based cellular automata (ACA) can be a solution to model the 

interactions between multiple types of activity, and between activities and land uses 

[2, 3]. As such, population and employment levels and their associated land uses can 

be predicted at a high spatial resolution. 

Another problem is that long distance spatial interactions are not covered by 

classical CA models. Therefore CA models are usually linked to a spatial-interaction 

based model representing dynamics among larger administrative regions [4, 5]. This 

strategy leaves a number of problems unsolved: (1) intermediate spatial scales are 

not represented, (2) to calibrate and couple both models, additional parameters are 

needed, and (3) the regions are compacted into their usually unrepresentative 

centroids [3]. The expansion of the neighbourhood to the entire modelling area, 

using a variable grid approach, can be a good solution [6, 7]. It uses rings of “super- 

cells” which become increasingly larger for longer distance interactions. Each 

super-cell of level L consists of 9 (super-)cells of level L – 1, and of 32L cells of 

the basic grid (“unit-cells”). 

In the next section we will describe the ACA model upon which this research is 

based. This model is being applied to, and calibrated for, Flanders, Belgium. Further, 

we will discuss some general data collection and application issues dealt with in 

the early stage of this research. Next, we will report on a robustness analysis of the 

model carried out for a sub-region centred on Antwerp. Finally, we will describe 

some possible approaches to work with transport network distances in the variable 

grid CA instead of simple Euclidian distances. 

A multiple activity-based cellular automaton 

A schematic representation of the ACA model used in this research and developed 

by White et al. [3] can be found in figure 1. Some land uses are associated with an 

activity: e.g. residential land use is associated with population. Each land use can 

host several activities, but the associated activity is considered the primary activity 

and other activities present on the cell are secondary. Land uses not associated with 

an activity are considered to be their own primary activity (e.g. the primary activity 

of a forest cell is forest), but they will generally also host secondary activities (a 

forest cell may also house people). For each activity K, the proportion qK to be 

located as primary activity (i.e. on the associated land use) is calibrated. The rest of 

the activity proportion (1 – qK) will be located on other land uses as secondary 
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activity. Compatibility factors between activities and all land uses are calibrated to 

this effect. To calculate transition potentials for land uses and associated activities, 

the neighbourhood effect of all activities and land uses on all activities, as well as 

several other factors are needed. The latter include: the zoning status and suitability 

for each activity, an accessibility measure, a random factor and a diseconomies of 

agglomeration factor accounting for high land costs and congestion in densely 

settled areas. The activity potential is calculated as: 

VKi = r ZKi RKi SKi Nki        (1) 

with VKi the activity potential for activity K on cell i, r a random perturbation, ZKi 

the zoning status for activity K on cell i, RKi the accessibility measure for activity 

K on cell i, SKi  the suitability of cell i for activity K, and finally NKi  the 

neighbourhood effect. The random perturbation r, representing the stochastic 

component of the model, is generated as: 

r = 1 + (- ln (rand))        

with rand a uniform random variate and  a parameter that controls the skewness of 

the function. Next, land-use transition potentials are calculated as: 

VTKi = DKi (VKi)mK + IKi        (3) 

with VTKi the land-use transition potential for activity K on cell i, DKi the 

diseconomies factor, mK a parameter to be calibrated and IKi the inertia value for 

activity K on cell i. Briefly, the transition process can be described as follows [3]: 

for each cell, transition potentials for different land uses are ranked, and then all 

cells are ranked on the basis of the highest value for each cell. Starting with the 

highest ranked cell, each cell is assigned the land use for which it has the highest 

transition potential until the demand for the particular land use is satisfied and no 

further cells are assigned to that use. Next, for each cell with a land use 

corresponding to an activity, primary activity is allocated in proportion to the cell’s 

activity potential. Finally, secondary activities are allocated proportionally to 

activity potentials, as adjusted in accordance with the compatibility factors. 
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Figure 1: Scheme of the activity-based CA model. 

Application of the ACA model to a test area in Flanders 

Several problems arose when applying the model of White et al. [3] to Flanders. 

Firstly, applying an ACA model at a 1 ha resolution for an area as large as Flanders 

(1,350,000 ha) is computationally heavy given the number of runs required for 

calibration and validation. Therefore we developed and tested a preliminary model 

on a region centred on Antwerp, in the central northern part of Flanders, consisting 

of Antwerp province and the neighbouring arrondissements of Sint-Niklaas and 

Dendermonde to the west (East Flanders province) (Map 1). This test area was 

chosen because its mix of activities and land uses are representative for Flanders as a 

whole and because extra data sets, including remote sensing products, are available 

that could be useful for solving a second problem, namely the lack of activity data at 

the detailed spatial resolution of the model. 
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Map 1: Location of the test area around Antwerp within the targeted modelling area (Flanders 

and Brussels) and Belgium. 

Good input data on the distribution of activities are indispensable for the appropriate 

functioning of the ACA model. Population and employment numbers for different 

economic sectors are needed for every cell, yet data are only available from official 

sources on an aggregated level (municipalities or statistical sectors). Dasymetric 

mapping, a multiple regression based spatial allocation technique, is applied on the 

aggregated data with a view to obtain the required cellular representation. In this 

approach, the individual cell (activity) values are the dependent variable, while 

other, known, cell-based geographical data (e.g. land use, distance to city centres) 

are used as independent variables [8, 9]. So far we have used a simple dasymetric 

mapping technique with only the input land-use map of the model as the 

independent variable. An improved dasymetric mapping is an important research 

goal at a later stage. 

In our research we make use of a 10 m resolution land-use map of Flanders for the 

year 2010 with 45 land-use classes, developed by VITO [10]. For the initial 

modelling work described in this paper we rescaled the cells to 1 ha entities and 

grouped the land uses into 9 classes: two activity-driven land uses (the residential 

urban fabric associated with population, and the industrial and commercial areas, 

associated with employment in all economic sectors), two area-driven land uses 

(protected nature and agriculture), two passive land uses (unprotected nature 

and other, a rest category), and three static land uses (recreational areas, 

infrastructure and water). The resulting initial land-use map is shown in Map 2. 

Zoning maps, physical suitability maps and transport network maps were available 

from earlier studies [11]. Forecasted population and employment trends for the 

Belgian arrondissements, obtained from the Federal Planning Agency, were used 

as future total activities. In the absence of a second land-use map, the model was not 

historically calibrated on the past, rather run forward from 2010. 
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Map 2: Actual land use around Antwerp in 2010. Industrial and commercial areas (black), 

residential urban fabric (dark grey), protected nature (medium grey), agriculture (light grey), 

and static and passive land uses (white). 

Robustness analysis 

The goal of a robustness analysis is to find out whether the model behaves as 

expected under extreme circumstances. Four scenarios were tested: (1) a strong 

decrease of built-up categories, followed by a strong increase (or vice versa), (2) 

atypical neighbourhood rules for residential activities, (3) major influence of 

railways on the accessibility for the residential activity, and (4) a very strong random 

perturbation. The scenarios were run until 2025 or 2040, depending on whether a 

longer run still made a big difference or not. 

When the built-up land use strongly decreases (scenario 1), only the centres of the 

cities remain as residential urban fabric which seems to be a logical result. However, 

forecasting industrial and commercial land use based on its associated activity 

(number of employees) does not always lead to good results. In the port area of 

Antwerp for example, the number of workers per cell is quite limited. In the case of 

a shrinking industrial sector (even for a small decrease), the model tends to eliminate 

port cells prior to other industrial cells, thus ignoring the huge economical 

importance of the Antwerp port (Map 3, top). When the amount of built-up area 

increases again, the port returns to its original location because the zoning map 

prevents the area from becoming residential. The residential urban fabric grows 

mainly around existing cities, which is logical. Smaller villages near the model 

edges, however, do not return (Map 3, bottom). 
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Map 3: Predicted land use around Antwerp in 2025 for an extreme decrease of urban areas 

scenario (top), followed by an extreme increase in 2040 (bottom). Legend as in map 2. 

In scenario 2 atypical neighbourhood rules for residential activities were tested. A 

negative weight for residential activity at medium distance from residential areas 

was assumed. After an unstable period lasting some years, this results after 15 years 

into a spatial configuration consisting of new cities, interspaced by a given distance 

(Map 4). This again is what could be expected. 

In the third scenario, raising the influence of the accessibility parameter determining 

the impact of railways on residential activity did not have a strong effect on the 

results obtained. With standard neighbourhood rules and average diseconomies of 

agglomeration, the interaction rules seem to dominate the accessibility parameters. 

Only in the case of low diseconomies of agglomeration, low inertia values for all 

land uses (especially natural categories) and in the absence of a zoning map, growth 

of new residential urban fabric is a little bit stronger near towns situated in a buffer 

zone around railways (Map 5). In general however, we can conclude that 
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accessibility parameters in the current model seem to have an insufficient effect This 

is one of the arguments for including network accessibility directly into the 

neighbourhood rules, as discussed in the next section.  

 

Map 4: Predicted land use around Antwerp in 2025 if residential activity repels itself at medium 
distances. Legend as in map 2. 

 

Map 5: Predicted residential land-use change around Antwerp in 2040 with a high railway 
accessibility parameter and a zero value for other accessibility parameters. Areas that remain 

residential urban fabric from 2010 to 2040 (light grey), new residential areas in 2040 (black), 

railways (dark grey lines). 

Finally we tested the impact of a high random perturbation effect (see equation 2) as 

part of scenario 4. Extreme random perturbation (values for  > 55) results in 

numerical instability. For values just below this critical value, new residential urban 

cells are mainly found scattered in agricultural zones, and also in a concentric zone 

at a certain distance around Antwerp due to the diseconomies of agglomeration 

effect (Map 6). This is as could be expected. As in scenario 1, the port area 

disappears because the employment activity values get too low. 
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Map 6: Predicted land use north of Antwerp in 2040 with a high random perturbation. Legend 

as in map 2. 

Calculation of distances in the variable grid model 

To calculate the neighbourhood effect, distances between the central cell and the 

other cells in its neighbourhood are needed. These distances should be measured 

over a transport network if we want to approximate as closely as possible real spatial 

interactions. It may even be better to use the relative time needed to travel between 

cells. However, a classical CA neighbourhood consists of a limited number of 

immediate neighbouring cells, hence, simple Euclidian distances are generally used. 

For example, the Spatially-Dynamic Land-Use Model for Flanders (RuimteModel 

Vlaanderen) has a circular neighbourhood of eight 100 m cells [11]. Hence, distance 

(or time) between the central cell and its neighbours is so small that the error made 

by using Euclidian distances is negligible. Moreover, the application of a cell-based 

accessibility measure to the central cell in the transition rule, is correcting for 

potentially over- or underestimated access to the cells in the neighbourhood.  

In the variable grid environment dealing with distance based interaction gets more 

complicated though [6]. Distances are now needed between the central cell and the 

centre of each super-cell in its neighbourhood, extending to the entire modelling 

area. Thus, using the classical Euclidian approach may introduce substantial errors. 

On the other hand, the calculation of network distances between all cells of the 
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modelled area is computationally very intensive, and/or requires the storage of large 

distance matrices. 

It is therefore a goal of our research to develop a “time-distance model” representing 

network distances with a minimum of (re)computation during the simulation. The 

chosen method should enable predicting anisotropic urban growth patterns 

depending on the integral accessibility between cells, rather than the opening up of a 

cell by the nearest links of the transportation system, as represented by the 

accessibility factor in the model. Possible methods include “detour factors” per 

region (and/or distance length class), and the storage of a distance matrix between a 

number of important major transportation nodes (or centroids of aggregated cells). A 

“detour factor” is a coefficient calibrated for a specific region that is multiplied 

with the Euclidian distance to approximate real network distances [12]. The use of a 

simple detour factor for the entire modelling area has no sense. We are only 

interested in relative distance (or time) differences, and such a factor would not 

change them. A different factor for different regions and/or distance length classes in 

the model could work but has also some disadvantages. Firstly, in a large region 

with mixed land uses like Flanders, it will probably be much more difficult to find 

appropriate factors than in single cities or in large rural areas. Secondly, if we would 

divide Flanders into a lot of sub-regions with different detour factors, this still 

implies the storage of a large set of factors. The method would therefore hold little 

advantages compared to storing a network distance matrix directly. 

 

Figure 2: Neighbouring cells of level 0 through level 3 around a unit-cell in the variable grid 

approach. 

Storing matrixes of network distances could be done in several ways. Distances 

between all cells are not needed, rather, the model requires distances between a unit- 

cell and the centres of all its super-cell neighbours. For a model at the 1 ha 

resolution, the total area of Flanders can be covered by variable grid (super-)cells 

ranging from level 0 until level 7, meaning 8 levels times 8 (super-)cells of each 

level around a centre level 0 cell (unit-cell) (Figure 2). 

Additionally, Euclidian distances could still be used for levels 0 and 1, as these 

distances are in the same range as the ones in classical CA neighbourhoods (e.g. the 

RuimteModel Vlaanderen). For larger distances (L ≥ 2), we need the average time 

between points on the network, as close as possible to the centre of the cells. If there 

is no network point within the cell, a time according to a very low speed should be 
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added to reach the cell. To implement and test this new approach, we will initially 

assume average speeds per road type, and replace them later by speeds taking into 

consideration local conditions including congestion. 

 

Map 7: Roads and land use northeast of Antwerp with a 900 m grid background. Motorways 
(thick black lines), major roads (medium black lines), minor roads (thin black lines); built-up 

areas (dark grey), agriculture and protected nature (light grey), other land uses (white). 

Still, storing all travel times from every unit-cell to its super-cells (L ≥ 2) would 

involve a lot of data. However, the time-distance from a unit-cell to a super-cell in a 

particular direction would in general be very similar to the time-distance from a 

neighbouring unit-cell to its corresponding super-cell in the same direction. This 

idea is also supported by the concept of a detour factor calibrated for very small 

regions and different distance length classes. Hence an efficient solution could 

consist in defining a regular grid of level 2 super-cells (a 900 m grid cell in our 

model as the unit-cell resolution is 100 m) – we will call this the stored distance grid 

– and calculating and storing time-distances between the centre unit-cell (L = 0) of 

each 900 m grid cell and the centre unit-cells of all its neighbouring super-cells (L ≥ 

2). All the other unit-cells within this 900 m grid cell can then make use of these 

stored time-distances. 

However, not every 900 m grid cell is connected to the road network (Map 7) and 

the nearest point on the network will not always be representative for larger super- 

cells if they are highly urbanised. Therefore we will experiment with different 

distance models: we can make use of the nearest major transport node to the centre 

cells, or just the nearest point on the network. We have to evaluate whether these 

models tend to over- or underestimate actual travel times. 
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Finally, we have to define a relationship between the distance used in the 

neighbourhood rules themselves (expressed as a level of super-cells L) and the 

calculated times T. In the current ACA model, the level L that has to be used can be 

calculated from the Euclidian distance D (in m) and the cell resolution R (in m): 

L = log3(D/R)        (4) 

In this research R = 100 m. Then the level L in the variable grid that has to be used, 

according to the calculated time-distance T is: 

L = LG + log3(T/TG)        (5) 

with LG the level of the stored distance grid (2 in this research) and TG the time 

needed to travel the width of one cell of the stored distance grid at a local travelling 

speed. 

Conclusions 

In this paper we discussed some critical issues related to the implementation of the 

activity-based cellular automata (ACA) model proposed by White et al. [3] for 

Flanders. Results of an ACA model at a high spatial resolution (1 ha) can be 

instrumental to explore future states of the Flanders region, characterised as it is by a 

large variety of built-up areas with mixed land uses. The modelling of activities at 

high resolution will also be of great value for several socio-economic and ecological 

applications [3]. 

Several problems remain to be solved: running a complex model for a large region 

like Flanders is computationally demanding. An efficient implementation is 

therefore required. Also, a better method is required to disaggregate activity input 

data to the resolution of the model. 

The results of a robustness analysis discussed in this paper are promising as most 

model components behave in line with the expectations. However, network 

accessibility should be incorporated into the model in a more realistic way. 

Alternative methods were discussed to compute or store network distances outside 

the time-loop of the ACA model in an effective and computationally efficient 

manner. The storage of a network time-distance matrix will probably be the best 

solution. The method discussed will be implemented in the next phase of this 

research. 
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Abstract 

Urban growth has been the subject of several studies in recent decades. Many 

studies is dedicated to the issue of segregation and production of peripheries in 

cities. Peripheral growth is understood as the socio-spatial phenomenon that occurs 

at the edges of the interface between city and natural environment (or rural), 

distinguishing two types of urban fabric expansions: the peripherization, related to 

occupations for residential use of low-income populations; and closed urbanizations, 

related to residential use production oriented for higher income groups. Considering 

that formal structure of physical space and society are closely interrelated, this 

investigation addresses the issue from urban morphology. Studies with 

morphological approach, though techniques and tools of modeling and GIS support, 

have used the cellular automata technique for urban growth simulation, assisting the 

production of knowledge about their processes and their dynamics. In this way, this 

paper aims to identify relationships between urban morphology and dynamics of 

peripheral growth, assuming operational hypothesis of the association of periurban 

spatial patterns with indicators of urban facilities concentration and buildings 

densities, with features of natural environment and socioeconomic similarities of 

neighborhoods. In order to demonstrate the procedures for peripheral growth 

simulation from the model implemented in software CityCell, we propose an 

exploratory case study in a medium-sized city in southern Brazil: Pelotas. The 

results demonstrate the importance of considering aspects of city and natural 

environment in an integrated way, as well as neighborhoods that can attract types of 

consumers, allowing the simulation of peripheral formation for future scenarios. 
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Introduction 

In recent decades, studies about urban growth have drawn models and theories about 

socio-spatial phenomena in order to represent and interpret inherent logics of the 

configuration of cities and their dynamic processes. One of these phenomena is the 

peripheral growth, which consists of urban fabric expansions in the edges of 

interface between city and the natural (or rural) landscapes, primarily for residential 

use, in a rapid dynamic of interaction and conversion of natural areas in urban 

ground. This phenomenon is associated with urban segregation problem and we can 

detach two peripheral types in Brazil: a) peripherization, related to concentration of 

low-income population [1], b) closed urbanizations, related to residential nuclei for 

high-income population [2] (including those that are not closed). From this reality, 

urban growth and natural environment changes have been understood as the greatest 

challenge to humanity for the XXI century [3]. 

With the computing development and increasing expansion of its storage capacity 

and data processing, and the development of geographic information systems (GIS), 

were possible advances in studies about related processes of urban phenomena. 

Efforts on urban modeling and simulation, with morphological approach and using 

the cellular automata technique enabled the incorporation of environmental, 

socioeconomic and politic dimensions in urban models [4-5]. These are important 

advances on spatial and temporal representation to modeling urban dynamics, 

increasing the use of models and simulators as scientific instruments. 

In this way, the goal of this research is identify relationships between urban 

morphology and the dynamics of peripheral growth phenomenon, aiming to capture 

patterns that are related to the fabric production of these two peripheral types. From 

this, the relationships are translated into an urban growth model implemented in a 

software called CityCell [6-7], enabling the periurban growth simulation. The study 

assumes an operational hypothesis related to the association of periurban spatial 

patterns with indicators of urban facilities concentration and buildings densities, 

with features of natural environment and with socioeconomic similarities of 

neighborhoods. 

Thus, this work starts presenting morphological characteristics of the peripheral 

types studied. Then we provide a brief theoretical review of urban models, urban 

modeling and the cellular automata technique for urban dynamics simulation. After, 

we present the urban growth model implemented on CityCell and their procedures to 

simulate the peripheral growth through an exploratory study applied to the case of a 

medium-sized city in southern Brazil: Pelotas. 

Morphological characteristics of peripheral formations 

Urban growth and peripheral nuclei formation, for high or low income population, 

have been observed in cities of different sizes in all Earth regions. In developed 

countries this phenomenon of peripheral growth is understood like urban sprawl [1], 

as the suburbs and edge cities. In underdeveloped or developing countries we also 

found similar formations to urban sprawl, such as the closed urbanizations. 

However, in these countries, peripheral growth phenomenon is mainly related to the 
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peripherization process, generating nuclei with concentrations of low-income 

population. In addition to income factor, there are other factors which characterize 

these peripheral types. We posted here those related to morphological dimension in 

the Brazilian case. 

Closed urbanizations is associated with the movement of elites from center towards 

the periphery [1] and may be characterized by: auto-segregation (looking groups 

with similar income levels and prevent different groups) [8-9-10]; diffuse and 

decentralized pattern in relation to central business district (CBD) [9]; occupy large 

urban areas [1]; low population densities [1-9]. Low income nuclei are more 

numerous and can be characterized by: buildings concentration (small, but close 

each other) and larger population densities; occupy areas close to natural landscape 

structures which are restrictive to urbanization [2-8], the dynamic of nuclei growth 

occurs through expansion by successive additions of similar types, in a continuous 

increase of occupations [1-11]. These morphological features, related to dynamics 

and production patterns of peripheral urban fabric, help to compose the operational 

hypothesis and the model procedures, which will be seen throughout the text. 

Modeling and simulation: using cellular automata to urban dynamics studies 

Urban modeling is the process of translation of urban theories into mathematical 

models, tested through experiments and simulations in computational environment, 

which functions as a laboratory [5-12]. The model objective should lead to choice 

the appropriate methodology for its construction, not vice versa [13]. Thus, 

according to its goal, models may have different representation, descriptive systems 

and technical approaches. 

One representation type used to understanding the urban morphology configuration 

is the cell grid, representing the surface like a matrix or a lattice of evenly spaced 

points, favoring the neighborhood contextual relationships and integrating Euclidian 

approach to the Leibnitzian [14]. This type of spatial representation allows complex 

data to work in spatially homogeneous way and it's one of main features of cellular 

automata models. 

CAs are objects of a computational cellular universe whose characteristics change 

systemically from simple rules, depending on neighboring objects characteristics 

[15-16]. The possibility to simulate systemical processes which local actions 

(neighborhood) generate reflections in global order allows incorporate complexity in 

modeling [15]. 

Portugali [16] defines the self-organization as one of the fundamental properties of 

complex systems, being a phenomenon that occurs when a system organizes its 

internal structure independent of external causes. To Johnson [17], in a similar 

manner, the complexity is in these systems that adapt through an emergent behavior. 

When a system has multiple components interacting dynamically in different ways, 

following local rules and without any perceived higher-level instruction, there is 

complex behavior. When these local interactions generate a pattern that can be 

perceived in macro scale, there is an emergent behavior. From it, is formed a self- 

organization network, with different components creating order without 

deterministic intervention and creating a system that emerges from the bottom-up. 
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CA models are able to replicate complex behaviors and self-organizing patterns of 

spatial phenomena. Thus, the results of simulations can be similar to real cities 

morphology, allowing construction of future scenarios [3]. 

Currently there are several CA models in use for urban applications. Most of them 

are proposed as a scientific tool for academic use. These are some examples of 

models used to simulate the land use changes or urban growth [5-12-18]: Dinamica 

EGO, developed by the Remote Sensing Center of Federal University of Minas 

Gerais (UFMG); Metronamica, developed by Research Institute for Knowledge 

Systems (RIKS); and SLEUTH, developed by the U.S. Geological Survey's Urban 

Dynamics Research Program (USGS). 

CityCell: the urban growth simulator 

To simulate urban growth, focusing on peripheral growth, this study uses a software 

called CityCell - Urban Growth Simulator, developed by the research group of 

Urbanism Laboratory (LabUrb) at the Federal University of Pelotas (UFPel) [7]. 

CityCell has incorporated the SACI - Simulador do Ambiente da Cidade (City 

Environment Simulator) [18], that is a dynamic urban model, which integrates CA 

and GIS; considers urban, natural and institutional attributes; and simulates urban 

growth through centrality and potential measures - adapted by Polidori [18] from 

Krafta [19] studies - and accumulated resistance (or constrictions) to urbanization. 

According Polidori [18], the urban planning has traditionally worked with isotropic 

environments, separating the city and nature. While many urban models have efforts 

to represent the city only by its effectively urbanized area, ecological models have 

difficulties to include the influence of cities, often treated as static and deterministic. 

The model incorporated in CityCell recognizes the need to overcome the isotropic 

approaches to study expansion of cities, considering urban and natural attributes. 

City and the nature are modeled in computational environment support by CA, 

graph theory, geotechnologies and adaptive modeling (allowing adjustments by user 

and input data according to the objective of study) [18]. Thus, the model enables to 

explore future scenarios by directing urban growth in order to make speculations 

about possible morphologies and approaching real cases. 

As model input data, are chosen spatial variables that are considered relevant to the 

process under study. They are linked to system cells and called attributes, which can 

be classified as: a) natural, which describe the environment undeveloped; b) urban, 

describing the urbanized environment; c) institutional, representing plans and 

policies that are capable to intervening in the urban growth process. Attributes are 

elements that can generate tensions of attraction or resistance to urbanization that be 

relevant to simulate the dynamics of changing reality. 

Tensions are abstractions associated with various types of flows (energy, people, 

vehicles, information) and represent investments in actions or modifications of 

space. In model, the city is reproduced from the distribution of five different types of 

tensions (Figure 1): a) axial, along paths or axes; b) axial buffer, around the paths or 

axes; c) polar, around nuclei; d) diffuse 1, randomic distributed, inversely 

proportional to its centrality and environmental resistance, and associated with 

formal production of high-income population (closed urbanizations); e) diffuse 2, 
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distributed randomly and also inversely proportional to its centrality, but directly 

proportional to environmental resistance and are associated with informal production 

of lower-income strata (peripherization). 

A B C D E 

Figure 1: CA diagrams representing the types of tensions [18]: A) axial, B) axial buffer; C) 

polar; D) diffuse 1, E) diffuse 2. 

The logic used in the model follows the understanding that centrality measure 

(considered an indicator of urban facilities) is able to describe potential change of 

urban space, creating locational imbalance in the system [20]. High values of 

centrality suggest areas of interest, movement and urban value, while low values 

indicate the opposite. The potential for change is found at the interface of the biggest 

difference between highest and lowest values from one location and its 

neighborhood. It is understood that this area combines locational advantages with 

lower cost of land, maximizing the income of achievement. Thus, the potential is 

used to increase the urban cell loading (urban load). This change process is iterative, 

continuous and complex, because locational opportunities are assimilated by other 

agents and the system is constantly changed. 

Even with presence of diffuse tensions in the urban growth simulation, the outputs 

of original CityCell are not sufficient to identify the peripheral types in resulting 

morphology. With these model limitations and seeking contribute to overcome them, 

simple procedures have been proposed for modeling and simulation of peripheral 

growth of cities, assisting the identification of peripheral types and the dynamics of 

its formation. These procedures compose a prototype of a transition rule called 

Periurban Growth Tendency (PGT) and will be presented below. 

Periurban Growth Tendency: a prototype transition rule 

The PGT rule is composed by following tendencies: 1) Diffuse Tendency, which 

explores the possibility of innovation, simulating the formation of new nuclei; 2) 

Neighborhood Tendency, which explores the positive feedback and the segregation 

logics to existing settlements expansion; 3) Final Tendency, which assumes the 

highest values of the two previous tendencies, corresponding the percentage of each 

peripheral type in city structure, making conversion of urban fabric. In this way, the 

diffuse tensions, as proposed by Polidori [18] and implemented in CityCell, allow a 

first approach for simulation patterns of urban peripheries. Their logics consider 

characteristics of urban morphology (low centrality) and natural environment (high 

resistances for peripherization; lower resistances for closed urbanization). 

Following the assumed operational hypothesis and considering the characteristics of 

natural environment are already part of the calculations of diffuse tension 

distribution, was formulate that identification can be obtained from the combination 

of measures that indicate concentration of urban facilities and buildings densities. 
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Are used the CityCell outputs corresponding to morphological measures of centrality 

and urban loads respectively, through programmed map algebra operations typical of 

GIS. 

The calculations proposed to find the Diffuse Tendency follow this logic: a) the 

peripherization is associated with lower centralities (where there is less supply of 

urban facilities) and a higher concentration of buildings (with smaller grain of urban 

land division and buildings closer each other); b) the closed urbanizations are also 

related to lower centralities, but not the smaller ones (where you can find more 

urban facilities), and the lower density of buildings. 

DTPeriph = Urban Load / Centrality R2       (1) 

where DTPeriph corresponds to diffuse tendency for peripherization; Urban Load 

corresponds to urban load value, normalized by maximum between 0 and 1; and 

Centrality R2 corresponds to cellular centrality normalized from logarithm with 

base-10, with values between 0 and 1. 

DTClurb = Centrality R1 / Urban Load          (2) 

where DTClurb corresponds to diffuse tendency for closed urbanization; Centrality 

R1 corresponds to cellular centrality, normalized by maximum between 0 and 1; e 

Urban Load corresponds to urban load value, normalized by maximum between 0 

and 1. 

The operational hypothesis also indicates association between spatial patterns and 

the socioeconomic similarities of neighborhood. Therefore, is important include the 

pre-existing peripheries in the system input data, acting as masks. The cells 

surrounding the mask take the urban load and the centrality values as variables what 

define the Neighborhood Tendency, using a distance-decay parameter representing 

actions-at-a-distance. 

However, the emergence of one peripheral type does not generate only positive 

feedback to the same type. High income people tend to not settle close to the 

peripherization. It can be understood how a negative feedback. And this negative 

effect can also happen in inverse way, when the valorizing of the proximities of high 

incomes settlements not permitting the occupancy by poor people. To replicate this 

effect of segregation in periurban growth process is included the parameter called 

repel radius, which consists in a buffer where the tendencies (diffuse and 

neighborhood) to opposite type of periphery are zero. 

NTPeriph = Urban Load / (r+1) . decay         (3) 

where NTPeriph corresponds to neighborhood tendency for peripherization; Urban 

Load corresponds to urban load value, normalized by maximum between 0 and 1; r 

corresponds to the radius (or the amount of cells from the edge of the mask); 

and decay corresponds to distance-decay constant. 

NTClurb = Centrality R1 / (r+1) . decay         (4) 

where NTClurb corresponds to neighborhood tendency for closed urbanization; 

Centrality R1 corresponds to cellular centrality, normalized by maximum between 0 
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and 1; r corresponds to the radius (or the amount of cells from the edge of the 

mask); and decay corresponds to distance-decay constant. 

The Final Tendency of cellular conversion is found by union of diffuse and 

neighborhood tendencies, prevailing the greater value when some cells have both 

tendencies. From the amount of cell of peripherization and closed urbanization 

masks, the system calculates the percentage of cells with each peripheral type in 

relation to total urban cells. In each iteration, the amount of urban cells increases and 

the peripherization and closed urbanization cells increases too according the 

calculated percentage (this percentage can be edited by the user, enabling the 

creation of scenarios), converting the cells with higher Final Tendency. So the initial 

masks are changed, feeding back the system to calculate the Neighborhood 

Tendency in the next iteration and generating dynamic to the model. 

FTPeriph = max (DTPeriph; NTPeriph)        (5) 

where FTPeriph corresponds to final tendency of land use conversion for 

peripherization; 

NTPeriph corresponds to neighborhood tendency; and DTPeriph corresponds to 

diffuse tendency. 

FTClurb = max (DTClurb; NTClurb)         (6) 

where FTClurb corresponds to final tendency of land use conversion for closed 

urbanization; 

NTClurb corresponds to neighborhood tendency; and DTClurb corresponds to 

diffuse tendency. 

The PGT prototype may be applied to all urban cells of the system or only to new 

cells brought with the urban growth process. In order to demonstrate the procedures 

included in CityCell model to peripheral growth simulation, through the PGT rule, is 

established an exploratory case study for the city of Pelotas, in southern Brazil. 

Exploring the periurban growth: the case of Pelotas, Brazil 

Pelotas has 327,778 inhabitants (according to Census 2010), with 93% living in 

urban areas. Its urban area is located in the coastal plain with low altitudes. The 

spatial clipping includes the effectively urbanized area of the city and its 

surrounding natural environment (and rural), in order to allow the model simulates 

expansion considering urban attributes and nature attributes. This study area 

(Figure 2A) has 33.018 km in east-west and 19.139 km in north-south direction, 

bounded by the following coordinates in UTM WGS 1984 datum, zone 22 south: 

6500195.75 northern boundary; 6481. 668.97 southern boundary; 393,807.48 

eastern boundary; 360,802.84 western boundary. The resulting grid of spatial 

disaggregation has 96 rows by 165 columns, resulting 15,840 cells with 200m x 

200m. 

To describe the study area were used three groups of attributes, corresponding the 

system input data and the constraints related to urban growth: urban attributes 

(effectively urbanized area (EUA) and central area) (Figure 2B); natural 

attributes (lagoon, waterways, lentic waters, drainage lines, wetlands, forests, 
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dunes, fields, and a random layer) (Figure 2C and 2D); and institutional attributes 

(prohibition to urbanize in lagoon and waterways). Besides the attributes, are also 

considered the masks of pre-existing peripheries: low-income settlements (LIS) 

and high-income settlements (HIS) (Figure 2E and 2F). The simulation was set to 

40 iterations (corresponding to 40 years), with growth rate approximately 1% per 

year and tension distribution called isotension (20% for each of five tensions). The 

PGT rule was applied to all cells of system and the parameters were set as 

follows: decay equal to 1; repel radius with 2 cells; the percentage of each 

periphery type based on mask. 

As can be observed, the result highlights an increase of peripherization on seaport 

area (at south), on Barro Duro balneary (at east) and the closer the Pelotas River 

(watercourse between center of city and the coast of the lagoon) (Figure 3A, marked 

with arrows). For the closed urbanization, mainly the result shows a vector directing 

toward the Laranjal balneary (at east) (Figure 3B, marked with arrows), which 

nowadays is empirically observed. This was only an exploratory study, aiming to 

demonstrate the procedures of PGT rule. The procedures need follow the validation 

steps and so could give more accurate results in simulations and future scenarios. 

 

Figure 2: Pelotas input data for 2010: A) Google Earth base; B) urban loads (EUA and center); 

C) environmental resistences (lagoon, waterways, drainage lines, wetlands, forests, dunes, 

fields); D) random resistences; E) mask of LIS (over EUA); F) mask of HIS (over EUA). 

A

C
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Figure 3: masks of peripheral types for Pelotas, respectively for iterations 13, 26 and 40, over 

EUA, with tendencies for the type formations: A) peripherization; B) closed urbanizations. 

Remarks and continuities 

Modeling with cellular automata techniques for urban studies and geosimulation 

have enabled simulate the morphological dynamic of urban growth, incorporating 

the current ideas of systems, complexity, emergencies and self-organization [3-16]. 

The periurban growth is a phenomenon associated with the urbanization process, 

having a strong relationship with natural environment changes and socio-spatial 

segregation in cities. Therefore, is important that studies about socio-spatial 

dynamic, especially when related to production of urban fabric in peripheral edges, 

consider aspect of city and natural environment in an integrated way. The urban 

growth model implemented in software CityCell considers both current ideas and 

aspects of the city and the natural environment, allowing to simulate dynamical 

changes of reality and to speculate about future scenarios. 

To model and simulate the periurban growth was constructed an operational 

hypothesis indicating that urban peripheries are associated with the concentration of 

urban facilities, buildings densities, natural environment features and socioeconomic 

similarities of neighborhoods, developed in a prototype transition rule called 

Periurban Growth Tendency. From results found for present study, can be made the 

following observations: a) the distribution of diffuse tensions proposed by Polidori 

[18] and related to centralities and natural environment resistences allows to simulate 

spatial patterns of the peripheral types; b) the Diffuse Tendency, that considers 

indicators of concentration of urban facilities and of buildings densities, allows 

identify tendencies of fuzzy urbanizations around the edges of city; c) the 

Neighborhood Tendency, from pre-existing peripheries, allows identify possible 

tendencies geared to attracting similar types; d) the Final Tendency, joining the two 

previous tendencies and consider all items involved in operational hypothesis, allows 

identify the conversion directed towards the peripherization and closed 

urbanizations. For better accuracy to periurban growth simulation is indicated apply 

procedures of validation (evaluating with patch measures and spatial correlation) 

and sensitivity tests. Finally, it is expected that the studies allow explore future 

scenarios, increasing discussion of peripheral growth and helping to strengthen the 

model as a scientific tool to decision-making processes for urban planning. 

A

B
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Abstract 

Geographic information systems (GIS) are a powerful tool to handle spatial 

information and are widely used to represent, manage and analyse spatial data in 

many disciplines including geosciences, agriculture, forestry, metrology and 

oceanography. In GIS, considerable efforts have been carried out for the 

representation and management of the spatial data, based on the object view of the 

space. However, they are still limited when it comes to representation and 

simulation of spatiotemporal processes. Examples of such processes in the 

geographic domain include global warming, inundation, erosion, land cover change, 

urban growth and traffic. GIS have been criticized for not being able to provide the 

necessary functionalities for representation, analyzing and predicting effectively the 

behaviour of those processes. The integration of Cellular Automata (CA) and 

geospatial models represents a potential solution for understanding and representing 

spatiotemporal processes. In this paper, we are exploring the potentials of a Voronoi 

lattice based CA as an alternative to improve GIS capabilities to represent surface 

water flow as a spatiotemporal process. In addition, we propose a hierarchical 

perspective of the built lattice that may be essential to easy move between scales and 

then to better understand the complex behaviour of the whole system. 

Introduction 

During the past decades, considerable efforts have been devoted to the 

representation and management of spatiotemporal processes. Examples of such 

processes in the geographic domain include global warming, flood, erosion, land 

cover change, urban growth and traffic. The integration of Cellular Automata (CA) 

and geospatial models represents a potential solution for modeling and 

representation of spatiotemporal processes for better understanding of their complex 

behavior. However, because of the irregularity and the multi-scale nature of these 

mailto:hedia.sammari.1@ulaval.ca
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processes, a classical Cellular Automata model may not be able to simulate their 

complexity. 

The aim of this paper is to propose a Cellular Automata approach using an irregular 

hierarchical tessellation. For this purpose, we propose to develop an irregular lattice 

of cells based on Voronoi diagram for discretization of the space that is hierarchical 

in order to better represent the multi-scale behavior of spatiotemporal processes. As 

a case study we will apply the developed tessellation for the simulation of surface 

water flow which has a very irregular behavior in the space and time and it is also 

necessary to study its behavior in more than one scale for hydrologists. This paper is 

thus organized as follows: The first part primarily deals with the cellular automata 

construction. In this part, we explain how we build a lattice of cells using Voronoi 

diagrams, how we define specific neighborhood and transition rules and how we can 

move from one scale to another to better represent the process behavior. In the 

second part of the paper, the proposed approach is applied to a specific 

spatiotemporal process in the hydrologic domain. We describe the CA transition 

rules equations in order to simulate surface water flow. Finally, we present some 

preliminary simulation results corresponding to a watershed located near Quebec 

City and we discuss the potentials and limitations of the proposed approach. 

I. Cellular Automata Construction 

In the context of Cellular Automata theory [17], our model consists of three primary 

components: a lattice of cells or grid, the neighborhood of each cell and the 

transition rules that determine the changes of cells properties. In fact, each of these 

components influences the state of each individual cell and in turn the global 

behavior of the phenomenon. In this section, we present the characteristics of our 

Cellular Automata Model and how its components can be organized hierarchically. 

1. The Grid Geometry 

[10] [1] and [ 2] argue that most of traditional Cellular Automata are based on 

regular grids which are known to be less complex and easier to operate than irregular 

ones [16]. Examples of these include rectangular, triangular and hexagonal 

tessellations. Although the regular grids Cellular Automata are simple to construct, 

they are less adapted to the irregularities of real world phenomena that they are 

supposed to represent. [4] and [9] suggest that the Voronoi diagram, and its dual 

Delaunay triangulation, can be a good choice for the representation and simulation 

of continuous dynamic fields. 

Following some early researches on irregular Cellular Automata [15] using a 

Voronoi-based spatial discretization, we propose to use Voronoi diagram as an 

alternative Cellular Automata lattice of cells that can effectively support a more 

realistic representation of spatial dynamic processes such as surface water flow. 

Briefly, a Voronoi diagram may be defined as a particular kind of space 

decomposition based on points or objects called generators. This decomposition 

leads to a number of Voronoi cells, each associated with one generator. In our 

approach each Voronoi cell corresponds to an automaton. 
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One of the main issues in generation of Voronoi diagram for cellular automata based 

simulation is to determine on which set of points or objects the diagram should be 

created. The answer is strongly dependent on the studied process as well as on the 

available data. The spatial decomposition should allow a realistic representation of 

spatial process and allow considering its irregular and complex behavior in the space 

and time. In our case, surface water flow and its behavior is strongly related to 

topography. Hence, the altitude is the most relevant parameter on which can be 

based a point selection to construct the Voronoi diagram. That’s why we use terrain 

elevation data points as generators of Voronoi cells. We can apply a point selection 

approach to any kind of original elevation data set in order to have multi resolution 

representation of the terrain topography. More specifically, terrain data is initially 

obtained from topographic maps. LIDAR point clouds are also very well suited to 

the construction of such irregular tessellations. Regular square grid elevation model 

can also be used as initial data set. However, in order to eliminate unnecessary 

points with appropriate algorithms and keep more relevant points for generation of 

Voronoi lattice. The procedure consists in making successive point selections from 

this original grid. Each selection’s output is a set of irregular distributed data points 

suitable to construct a Voronoi diagram. The first selection keeps a maximum 

number of points and generates our cellular automata initial data set. Then, the 

following selections reduce the number of points, allowing less and less Voronoi 

cells in each diagram or grid and defining different levels of scale. Details of point 

selection algorithm are given in Section 3 which presents the multi-scale character 

of the grid. Once the grid of Voronoi cells is built, the issue is to define the 

necessary rules that formalize the interactions between neighbors and dictating the 

update of cells’ states. 

In the next subsection, we propose our own definition of the neighborhood 

relationship between cells and we explain what kind of transition rules can be 

used in the case of surface water flow CA simulation. 

2. Definition of an Oriented Neighborhood and Transition Rules 

Traditional square CA grid usually uses Moore and Von Neumann’s neighborhood 

where the degree of neighborhood relationships is either 1:4 or 1:8 [3]. 

In the case of a Voronoi partition, the number of neighbors is different from one cell 

to another depending on the spatial distribution of data points in the space. 

Furthermore, the distance between the cell and each of its neighbors and the length 

of the common boundary cannot be fixed. However, the Delaunay triangulation 

associated with the spatial discretization may be used to provide the links that define 

the neighborhood, which is an important component of the CA approach. In fact 

Voronoi diagram creates a space partition into regions such that any location is 

associated with its nearest Voronoi generator [5]. According to Gold [6], this allows 

for an automated discretization of space and provides an adjacency structure from 

which a topology table can be generated. 

More specifically, a Voronoi data structure is defined so that each Voronoi cell is 

associated with a vector containing information about its vertices, edges and 

neighborhood’s generators. This structure allows for reaching parameters and states 

of the neighbor cells in order to establish the transition rules and update the general 
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grid state. In our case, we define a specific neighborhood based on terrain elevation 

and the studied phenomenon. As a matter of fact, a cell A is considered to be a 

neighbor of a cell B not only if it is a geometric neighbor on the Voronoi diagram, 

but also if water can move from B to A. Hence, in this case, B is not necessarily a 

neighbor of A. One cell may have no neighbor if its elevation is lower than the 

elevations of its Voronoi neighbors (Figure 3). This specific neighborhood is 

predetermined before running the simulation algorithm. It is an output of the space 

decomposition as well as the surface slope, two inputs which are strongly related to 

the terrain elevation in the case of a surface water flow. Knowing that transition 

rules are applied to neighbor cells, we can talk about oriented transition rules 

because the interactions between cells agree with the water direction: Water 

movement defines between which cells exist interactions and in which direction the 

flow is authorized. 

 

Figure 3: Oriented CA Neighborhood Definition 

The following subsection deals with building space scales using a Voronoi diagram 

decomposition and explains the algorithm we use to select points for each scale 

level in order to have a multiscale space discretization. 

3. Spatial Hierarchy 

Generally, considering a multi-scale Cellular Automata, we need a grid refinement 

method. This is useful when the real-world phenomena and associated behavior can 

be studied and simulated at several levels of detail (or scales). 

One important innovation of our Cellular Automata approach is the multiscale 

aspect of the irregular grid of cells. In Geographic Information Systems, spatial 

hierarchy of regular square grids is usually based on a quadtree data structure that 

allows to recursively subdivide the space into quadrants. Hence, each internal node 

has exactly four children. However, this kind of spatial hierarchy is rarely discussed 

in the case of irregular space decomposition, and more specifically in relation to 

a CA model. Indeed, the issue is to find a method to build different levels of 

space scales based on Voronoi diagrams. In the literature, [5] propose to construct 

Voronoi cells for the whole data set which constitutes the micro level of the details. 

Moving to higher levels is accomplished by reducing the number of Voronoi cells. 
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However, no algorithm was proposed to reduce the number of Voronoi cells. 

Indeed, a similar approach was used by [11] who proposed a structure where the 

index generators were local maxima of a given attribute (such as elevation). Our 

solution is to go from a micro scale to a meso and then a macro scale by selecting 

points from the original data set and constructing a Voronoi diagram for each scale 

using a reduced number of points. Hence, we propose an approach that allows us to 

identify and sort important points for each scale and then construct one Voronoi 

diagram for each scale. Certainly, depending on the type of spatiotemporal process 

and its characteristics, there may be different methods to select data points or 

objects for each space scale representation. Terrain generalization algorithms are 

well suited for multiscale representation of terrain topography and its morphology. 

Several generalization algorithms exist in terrain modeling domain. We selected 

one of them, the VIP algorithm (“Very Important Points”) that can be related to 

surface water flow processes. Actually, it is specifically used to store elevation 

data points in order to eliminate less important points and to keep only the points 

that are necessary to reproduce a topography model closest to reality. To apply the 

VIP algorithm we need a Digital Elevation Model (DEM) of the studied area, 

which has to be a raster square grid DEM. Then, the method assesses how important 

is a given point by calculating how its elevation can be approximated by the 

elevation of its direct eight grid neighbors. More precisely, a three by three filter is 

used to define a kind of Moore neighborhood. So, each point has 8 neighbors 

forming 4 diametrically opposite pairs. The procedure consists in examining each of 

these pairs in turn for each point of the DEM: we connect the two neighbors by a 

straight line and compute the perpendicular distance of the central point from this 

line. For example, in Figure 5, we show how to compute the perpendicular 

distance for N1 and N2 the north and south neighbors of a point P. It is assumed 

that the greater the difference between a real point’s elevation and the estimated 

elevation from its grid neighborhood, the more important the point is in term of 

surface significance. 

 

Figure 5: distance between diametrically opposite pairs 

Then, we average the four distances to obtain what we call a significance measure 

for the point. After that, selecting very important points is done by deleting points of 

the DEM in order of increasing significance (deleting the least significant first). We 

carry on the deletion until meeting one of the two following conditions: either the 
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number of points reaches a predetermined limit, or the significance value reaches a 

predetermined limit (Figure 6). 

 

Figure 6: VIP Algorithm 

In practice, once the different Voronoi diagrams levels (or scales) are built; the 

approach is to couple grids of different scales and define their overlap regions. 

Indeed, as the basic geometry of the grid is a Voronoi cell, its shape is different 

from one cell to another and also from one scale to another. Furthermore, when we 

slip through scales; we cannot predefine the final shape of an aggregation of a set of 

Voronoi cells because the boundaries of one level do not necessarily correspond to 

the higher level boundaries. Hence, our future approach’s attempt is to examine the 

degree of overlapping between grids of different scale and to propose a solution to 

aggregate parameters values from low to high levels. 

 



Sammari et al., An Irregular and Multi Scale Cellular Automata 

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 227 

II. CA Transition Rules for Surface Water Simulation 

Watershed runoff simulations have been traditionally based on numerical 

computations solving momentum and energy equations. While simulations based on 

these methods generally simplify the constitutive equations in order to allow for a 

closed solution [13], our cellular automata approach is a different alternative to 

simulate water flow because unlike in traditional simulations it only computes local 

processes from which emerges the global behavior that is not linked to the model 

[11]. 

Surface water flow between cells is based on physical processes involved in water 

movements. Hence, in order to maintain the conservation of mass, Cellular 

Automata rules should specify the added quantity of water to each cell as a result of 

precipitation (rain) as well as the loss of water due to infiltration in the soil. The 

method is specified as follows: In each cell, we calculate the water velocity using a 

rule based on Manning’s equation (Equation 1) [12] where the velocity depends on 

the water surface slope S and the input roughness n depends on the type of soil and 

vegetation. 

 

Typically, Manning’s equation is an empirical formula for open channel flow 

calculations. Hence, as we simulate an overland flow, the water depth is an 

approximation which corresponds to the normally-used hydraulic radius in 

Manning’s equation. The same approximation was used by [11]. 

The velocity is then used to compute the time T needed for the water to traverse the 

cell (Equation 2). Until the time condition is met, the simulator keeps the water in 

the cell. This time is then reset once the water in the cell is released to its 

neighbouring cells. 

 

The simulation procedure that we use to update the grid state is explained in Figure 

4. Firstly, we choose a time step so that water will not cross the cell in less than one 

time step. Another condition is that the simulation time step cannot be less than 

available data time step. For each cell of the grid we calculate the traverse time T as 

explained in the CA algorithm (Figure 7) using equations 1 and 2. When the 

traverse time T is completed, the amount of moveable water leaves the cell. 

However, before that, this amount is stored in a buffer layer until we cover all the 

grid cells. Then, the updating of the entire grid is applied simultaneously. The 

distribution of the moveable volume of water is dictated by the elevation of the 

neighbourhood’s cell. 

In fact, the neighbours share the moveable water of the centre cell if its surface 

water elevation is higher than them. In other terms, the model allows to transfer the 

movable volume of water to the downstream neighbours in proportion to the 

difference in water surface elevation. The following example is given by [13]: if two 

neighbours have lower water elevation than the centre cell, and if one of them is 

twice as low as the other, than two thirds of the centre cell’s movable water would 
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go to the lowest downstream neighbour and a third would go to the other 

downstream neighbor. 

 

Figure 7: Simulation CA Algorithm 

 

Currently, we have implemented the proposed CA approach for surface water flow 

simulation. The simulation engine has been be developed in C++ programming 
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language which is selected as the development language due to its 

compatibility with the CGAL (Computational Geometry Algorithm Library) library 

chosen for the geometric lattice building. 

Data about terrain elevation, precipitations, type and occupation of the soil are 

collected in Montmorency River watershed in Quebec City region where Laval 

University has an experimental watershed named “Eaux Volées” with a huge amount 

of data available and observed in a regular base for more than forty years (Figure 

5). 

 

Figure 5: Location map of the Montmorency river watershed [14] 

This data can be used not only for the calibration of the simulation engine but also 

to validate the simulation results. Data inputs into our model are in forms of raster 

layers exported from GIS text files. As a matter of fact, firstly, Voronoi diagram of 

the micro scale is constructed with the prototype using CGAL functions. Then, the 

generators coordinates are exported to ArcGIS where we interpolate other 

simulation inputs: a layer of water depth (precipitation values minus infiltration) to 

be used in equation (1), a layer of slope values which can be derived from elevation 

layer and a layer of roughness coefficients derived from type and soil occupation 

layers. Finally, in order to apply equations (1) and (2), the attribution of parameters 

to each automata cell is done by our simulation engine which takes the Voronoi 

structure as an input. 

A major consideration of CA models is the computational resources needed to run 

simulations. We are working on improving computational time, which is currently 

about 30 seconds per time step for a grid of 800 Voronoi cells. The result of a first 

simulation shows how the model reacts to a constant 0.01 Manning’s n roughness 

value (Table 1). This shows that the model produces realistic watershed simulation: 

the same order of magnitude of real data. 
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Table 1: Simulated and in situ Velocity values comparaison 

Period Simulated Velocity (m3/s) In situ Velocity (m3/s) 
June 2010 0.0643 0.0741 
July 2010 0.0862 0.0566 

 

In this step, multiple simulations are still to be performed to determine the impact of 

varying the unknown parameter of roughness rate. Nevertheless, a better 

computational time is necessary to allow such tests. That’s why, what is 

pressing right now is to reduce the simulation running time. 

III. Conclusion and Challenges 

In this paper we have presented our research on a hierarchical irregular lattice 

based Cellular Automata using Voronoi diagram for the simulation of spatial 

dynamic processes such as surface water flow. It has been argued that the 

traditional CA approaches based on regular tessellations are not suitable for very 

irregular varying real world phenomena; we have proposed to use a Voronoi 

hierarchical lattice instead of traditional regular grids which are commonly used 

both in CA simulation methods and GIS raster models. We have suggested the 

Voronoi diagram as an alternative space discretization model within GIS in order 

to improve GIS capabilities for spatiotemporal processes presentation and 

simulation. Showing the utility of different scales representation of spatiotemporal 

processes, we propose a hierarchical approach that allows to merge Voronoi cells 

based on the data attributes values, and then to move to higher scales. We have then 

detailed different components of a CA simulation approach and described how it 

can be practically applied to the simulation of the dynamic phenomenon of surface 

water flow. Finally, we have detailed different procedures for the simulation of 

surface water flow in a given watershed in Quebec region using the proposed 

approach. An algorithm defining the CA rules was presented based on 

hydrologic equations in order to define the interactions between CA cells. The 

required information for the simulation process was identified using this equation 

which mainly includes Digital Terrain Model, slope, soil type, vegetation, 

information on precipitation and etc. There are numerous challenges that we need to 

study in details in order to adequately adapt the proposed method for the simulation 

of a dynamic process such as surface water flow. Firstly, spatial resolution for the 

micro level is an important point to be considered. It is clear that the proposed 

method can adapt itself to any resolution that is required by the application. In 

addition, in contrast to the existing regular grid based CA, we can create a multi-

resolution adaptive grid to better represent the spatial variability of the dynamic 

process in any level of hierarchy. Another challenge is the selection of the temporal 

resolution for the simulation process that needs to be decided. The third challenge 

consists on the attribution of the initial states to each cell. Validation of the 

simulation process is another challenge that we need to address. Finally, the 

aggregation process needs to be done more carefully, knowing the fact that 
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aggregated cells surface does not exactly correspond to the higher level cell surface. 

This introduces some uncertainties in aggregated data in higher levels. Hence, we 

need to consider the propagation of these uncertainties to higher levels of 

aggregation and try to reduce their impact on final results. To sum up, several 

experimentations would be also necessary in order to more rigorously evaluate the 

potentials of the proposed method. 
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Abstract 

This paper presents a method for mining the land use transition rules and parameters 

of a cellular automata urban growth model using a self-adaptive genetic algorithm 

(SAGA) method. It builds on the evolutionary computation technique to search for 

and optimize a set of spatial parameters representing various spatial factors 

impacting on urban land use change. The application of the SAGA-CA model to 

simulate the spatio-temporal processes of urban land change in Southeast 

Queensland’s Gold Coast City, Australia from 1991 to 2006 demonstrates that the 

self-adaptive genetic algorithm can be integrated within a conventional urban CA 

model to improve the performance of the model, therefore enhance our 

understanding of urban landscape dynamics. 

Introduction 

There is a long-standing interest in understanding urban dynamics through the use of 

computer generated simulation models [1-10]. Compared to modeling approaches 

developed with the exclusive use of mathematical formulae, such as those based on 

gravity theory to model transportation networks and land-use planning, models 

based on cellular automata (CA) have been favored due to their ability to capture the 

systematic spatio-temporal process and the stochastic behavior or characteristics of 

land use change [8, 11-13]. 

Central to a CA based urban model is the definition of the model’s transition rules 

which determine how the state of a cell changes over time [4, 12-14]. Cellular 

automata models are simple in nature and are flexible at incorporating various 

transition rules that may impact on urban development into the model. This type of 

model is intuitive and capable of incorporating different driving factors to urban 

land use change into the simulation process. However, the challenge remains in the 

identification of appropriate parameter values to quantify the effect of various 

driving factors on urban growth [15, 16]. 
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The development of genetic algorithms (GAs) has provided researchers with new 

ways to identify and search for suitable transition rules and their defining parameters 

in urban modeling [17, 18]. A genetic algorithm can be used to search for an optimal 

solution to a problem based on the mechanics of natural genetics and natural 

selection [19]. Compared with other evolutionary methods such as particle swarm 

optimization [20, 21], GA’s unique feature exists in its operators, including 

selection, crossover, and mutation. Substantively, GA is a randomized method rather 

than a simple random operation because historical information is used to speculate 

on new candidate solutions [19]. 

This paper presents a method for mining the land use transition rules and parameters 

of a cellular automata urban growth model using a self-adaptive genetic algorithm 

(SAGA) method. The model was applied to simulate the spatio-temporal processes 

of urban land change in Southeast Queensland’s Gold Coast City, Australia. The 

following section presents the modeling framework, followed by a description of the 

study area where the proposed CA model is tested and calibrated. Next, the results 

generated from the application are presented and discussed. Conclusions are drawn 

in the last section. 

The Modeling Framework 

The modeling framework consists of a generic CA urban growth model which is 

linked to an optimization module using SAGA to search for an optimal set of 

transition rules and parameters for the CA model to simulation the dynamic process 

of urban growth (Figure 1). 

 

Figure 1: The SAGA-CA modeling framework 



Liu and Feng, Mining of CA based land transition rules 

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 235 

di 

The generic CA urban growth model 

The generic CA urban growth model was initially configured using logistic 

regression approaches [22], where the land use conversion probability of a cell at 

location i at time t is represented as: 

 

Where: 

Pi represents the land use conversion probability of cell i at time t; Pt is a land use 

conversion probability due to its spatial proximity to facilities and services. This is 

controlled by a set of spatial proximity factors d j ( j  1,..., k ), including the distance of 

each cell to the key regional and regional centers, distance to sub-regional and 

district centers, distance to highways, distance to main roads, distance to the 

coastal line and the prime agricultural land    
  can be written as: 

 

The parameters a0 and a j ( j  1,..., k ) representing the impact of each distance 

factor on land conversion probability are to be mined and optimized using the 

SAGA optimization approach. 

Pt  is a land use conversion probability due to neighborhood support. In this 

research, a square neighborhood with m×m cells was adopted; the probability a 

cell develops from one state to another is defined as a proportion of the accumulative 

state of urban cells within the m×m neighbourhood in total neighbouring cells. For 

the case study implemented in this paper, the neighbourhood size is 5×5 cells. 

C represents a (set of) land suitability constraints where urban growth cannot 

occur. R is a stochastic disturbance factor on urban development. 

The temporal scale is set to one year for each iteration of the model. Details 

regarding the logistic regression based CA model can be found in [22]. 

Self-adaptive genetic algorithm for mining of transition rules 

GA represents a possible solution by a chromosome. Each chromosome consists of a 

set of genes or parameters that need to achieve an optimal solution to the problem 

the GA is trying to solve. In the CA based urban modeling practice, all possible CA 

transition rules affecting urban land use change are considered as chromosomes and 

their defining parameters are the genes. 

To search for an optimal solution which minimize the difference between simulated 

and observed land use patterns, GA uses a fitness function to evaluate and quantify 

the optimality of a solution [23]. This search and optimization process is achieved 

according to natural selection rules, including selection, crossover and mutation. 

However, standard GAs use fixed selection, crossover and mutation rates; this 

can be problematic as such operators and their parameters cannot be modified during 

the search and optimization process. A SAGA can overcome this problem; it not 

only keeps population diversity effectively but also improves the performance of 
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local and premature convergences [24, 25]. Such genetic diversity is important to 

ensure the existence of all possible solutions in the solution domain and the 

identification of an optimized solution. In addition, the SAGA improves the search 

speed and precision of the standard genetic algorithm and hence, accelerating the 

search and optimization process for problem solutions. 

Selection is the key operation of the SAGA in which individual genomes are chosen 

from a population of candidate solutions for later breeding, including recombination 

and crossover. Individual solutions are selected through a fitness-based process 

during each successive generation where solutions with better fitness values (that is, 

the difference between the simulated and observed results is smaller) are more likely 

to be selected. The crossover and mutation operators are adopted from [24], which 

were defined through a probability measure which changes in accordance with the 

fitness values. 

Study Area and Data 

Gold Coast City in South East Queensland, Australia was selected as the case study 

site to apply the SAGA-CA model to simulate its land use change from 1991 to 

2006. Gold Coast City is situated in the southeast corner of Queensland; it extends 

north to the southern fringe of metropolitan Brisbane, the state’s capital city, south 

to the border with the state of New South Wales, and west to the Lamington 

National Park, the foothills of the Great Dividing Range (Figure 2). It has a total 

area of 1400 square kilometers. The current urban structure consists of a range of 

suburbs, localities, towns and rural districts which, according to the Gold Coast 

Planning Scheme, will evolve into key regional centers, regional centers, sub- 

regional centers and district centers [26]. 

 

Figure 2: The City of Gold Coast (right) and its location in Australia (left) 
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Gold Coast City has grown from a small beachside holiday town to the 

second largest city in Queensland and the sixth largest city in Australia over the past 

fifty years. From 1996 to 2006 it has seen a population increase from 375,000 to 

472, 000 [27]. The rapid population increase has lead to phenomenal economic 

development in the city and the state and significant geographical expansion of 

urban areas. According to Ward et al. [28] urban areas in Gold Coast City increased 

by 32% from 1988 to 1995. Such rapid urban growth and change may present 

challenging issues in terms of social, environmental and economic sustainability 

[29]. 

Two Landsat Thematic Mapper (TM) imageries acquired in 1991 and 2006 were 

used to quantify the extent of land use change over this period in time. These data 

were re-sampled to 30m spatial resolution with 1402 rows by 1965 columns. Three 

types of land uses were classified from the imageries; urban, non-urban and water 

bodies. As the focus of this research is on land use change from non-urban to urban 

states, the presence of water bodies was considered as physical constraints to urban 

growth. In addition to the satellite imageries, data representing key regional and 

regional centers, sub-regional and district centers, highways, main roads, coastal 

line, natural conservation and prime agriculture land as well as a 9 second DEM 

were collected from the relevant government agencies. All data were re-processed to 

raster grids in 30m spatial resolution. 

Results and Discussions 

Optimal chromosome/CA transition rule parameters 

To construct a fitness function and commence the searching and optimization 

process using the SAGA approach, a total of 20 000 sample cells were randomly 

selected from within the study area. The distances of each of these sample cells to 

the key regional and regional centers ( d ct ), sub-regional and district centers ( d tw ), 

highways ( d hw ), main roads ( d rd ), the coastal line ( d cl ) and the prime agricultural 

land ( d ag ) were extracted from the relevant distance data layers. The model 

achieved the best fitness value after 4,000 iterations. The convergence of the fitness 

track led to the identification of an optimized chromosome or solution (Table 1). 

Table 1: Optimized chromosome of the GeneCA model 

 

The optimized chromosome demonstrated the different impacts of the spatial factors 

on urban land use change in the Gold Coast City. According to Equation (2), a 

negative parameter of ai (i  0,1,...,6) leads to a larger Pgi (t ) value, that is, a positive 

impact on urban growth or higher probability for a cell to convert from a non-

urban to an urban state. Likewise, a positive ai value results in a smaller Pgi (t ), 

hence, a negative impact on urban growth or lower probability for the cell to convert 

into an urban state in the next time step. The parameter values optimized by the 

Variables Constant d ct d tw d hw d rd d cl d ag 

Parameters 0.779 -0.668 -0.471 -0.227 -0.304 -0.003 0.592 
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SAGA shows that the distance to the key regional and regional centers has the most 

significant impact on the development of cells within its neighborhood, followed by 

the impacts of distances to the sub-regional or district centers and the main roads. 

On the other hand, close proximity to prime agriculture land has negative impact on 

urban land use change. Hence, the closer a cell is to agricultural lands the less likely 

the cell is to be developed to an urban state. This is consistent with regional policies 

of conserving prime agricultural land. 

Simulation accuracy assessment 

To evaluate the simulation accuracy of the model, the error budget analysis as 

proposed by Pontius et al. [7] was applied to compare the simulated results with the 

land use classification data from the satellite imageries. This is to evaluate whether 

the observed agreement between the map pairs is attributable to chance ( Cagr ), 

quantity ( Qagr ), or location ( Lagr ), and whether the disagreement between the map 

pairs is attributable to location ( Ldisagr ) or quantity ( Qdisagr ). The five indicators were 

computed for 2006 (Figure 3). 

 

Figure 3: Actual and simulated land use patterns of Gold Coast in 2006 

Comparing the percentages of agreement and disagreement between the 2006 

simulated result and 2006 reference map (Figure 4), the model achieved a simulation 

of 85.0% match of cells between the two maps. Amongst these matching cells, 

29.2% are locational matches and 27.1% are quantity agreement and the remaining 

28.7% are agreement due to chance. On the other hand, there is 15.0% mismatch of 

cells between the two maps where 5.2% are due to quantity disagreement and 9.8% 

are locational disagreement (Figure 4). 
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Figure 4: Error budgets between the reference and simulated result in 2006 

Discussions 

Previous studies show that the simulation accuracies of CA urban models are 

affected by the methodologies used in retrieving the transition rules, the spatial and 

thematic resolution of the model, as well as the physical, socio-environmental and 

institutional situations of the areas under study. In this research, three thematic 

categories (i.e. urban, non-urban, and water body) were extracted from satellite 

imageries to simulate the process of land use change from non-urban to urban. 

Given the complex land use types and conversions on the ground, it is challenging 

to apply a model with simplified land use categorization to simulate multiple land 

use change processes while still maintain high simulation accuracies. 

The simulation accuracy of the CA based urban models is sensitive to the spatial 

scale or resolution of cells [30, 31]. CA models configured at a coarse resolution 

(e.g. 250m) usually generate low simulation accuracies whereas models configured 

at finer resolution (e.g. 30m) generate relatively high accuracy [31]. The low 

simulation accuracy of the model at a coarse scale is usually due to the isolation of 

urban cells at such scale, where only a small number of isolated urban cells can be 

identified in the initial input data [31]. 

Moreover, the methodology adopted in retrieving the CA’s transition rules is crucial 

for good simulation results. A number of new methods have been developed 

to capture land use dynamics and improve simulation accuracy. Using an 

evolutionary computation technique the SAGA-CA model is a further improvement 

on conventional spatial statistical methods such as logistic regression based CA 

models; it optimizes the transition parameters of the CA model to improve the 

model’s simulation accuracy. By applying the self-adaptive genetic algorithm 

method to a typical logistic regression based CA model, the model is capable of 

taking into account feedback from individual ‘genes’ during the modeling process. 

This leads to the identification of a set of optimized transition rules. 
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Conclusion 

Spatially-explicit simulation of urban land use change has attracted widespread 

interest in recent years with the focus on the spatio-temporal dynamics of urban 

system and its land use evolution. Many CA based urban models have been 

developed and applied in various situations. It is useful to apply such model to 

simulate the dynamic change of urban land use, provided that suitable transition 

rules reflecting the characteristics and driving factors on land use change are 

identified and built into the model. However, it remains a challenging issue for 

urban modelers to achieve such accomplishment in the modeling practice. 

This paper contributes to this field by developing an urban CA model with its 

transition rules optimized by a self-adaptive genetic algorithm. It builds on the 

evolutionary computation technique [24, 25] by introducing a self-adaptive genetic 

algorithm to search for and optimize a set of spatial ‘chromosomes’ through a series 

of interactive and dynamic selection, crossover and mutation operations. The self- 

adaptive genetic algorithm was used to optimize the spatial parameters representing 

various spatial factors contributing to urban land use change. Consequently, a set 

of optimized transition rules and their defining parameters were identified and used 

to simulate the process of land use evolutions. The application of the SAGA-CA 

model to Gold Coast City demonstrates the effectiveness of the SAGA technique in 

optimizing the transition rules of an urban CA model, thereby contributing to human 

studies of urban landscape dynamics. The high simulation accuracy generated by the 

model demonstrate that the SAGA-CA model is a promising tool for simulating 

urban land use change and future land use scenarios. 

Further research will focus on introducing other spatial factors, such as land values 

and income differentiated socio-economic factors, into the modeling process, as well 

as considering multiple types of land use changes. This will evaluate whether the 

SAGA technique is capable of searching for and extracting more complex transition 

rules on urban land use evolution. 
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Abstract 

Empirical models meant to simulate and predict urban land use change are 

commonly dependent on the utilisation of statistical methods to estimate the 

probabilities of land use change. As opposed to such probabilistic methods, genetic 

algorithms (GA) arise as an ancillary heuristic tool to refine and optimize such 

probabilities by means of non-parametric approaches. This work introduces a 

simulation experiment on urban land use change in which a GA-optimized Bayesian 

calibration model has been employed in the parameterisation of several 

infrastructure variables considered for simulation. The estimated spatial land use 

transition probabilities drive a cellular automaton (CA) simulation model, based on 

stochastic transition rules. The model has been tested in a medium-sized town in the 

Midwest of São Paulo State, Bauru. A series of simulation outputs for the case study 

town in the period 1988-2000 were generated, and statistical validation tests were 

then conducted for the best results by means of multiple resolution fuzzy similarity 

measures. 

Introduction 

The employment of evolutionary (or Darwinian) premises for automated problem 

solving is not new and dates back from the 1950s. Nearly a decade afterwards, three 

different interpretations of this approach started to be developed in parallel by three 

distinct researchers. Lawrence J. Fogel [1] in the US was the first one to 

introduce the concept of evolutionary programming. John Henry Holland [2], 

on his turn, called his method a genetic algorithm. In Germany, the domain of 

evolution strategies arose with Ingo Rechenberg and Hans-Paul Schwefel [3]. It 

was only in the beginning of the 1990s that these three areas were merged under 

one major field called evolutionary computing. Also at this time an alike fourth 
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stream had emerged – genetic programming. In this way, evolutionary computing 

turned out to embrace the sub-areas of evolutionary programming, evolution 

strategies, genetic algorithms, and genetic programming. 

The field of evolutionary computing has presented linkages with Artificial Life, 

especially since the 1990s, with the swarm-based computation and nature-

inspired algorithms. Genetic algorithms in particular gained popularity with the 

work of John Holland [2]. According to [4], the increasing academic interest in 

this field led to meaningful advances in the computers processing capacity for 

practical applications, including the automatic evolution of computer programs. 

Evolutionary algorithms, as stated in [5], “are now used to solve multi-dimensional 

problems more efficiently than software produced by human designers, and also to 

optimise the design of systems”. 

As [6] reported, the use of genetic algorithms in cellular automata (CA) models 

started at the end of the 1990s with the work of [7]. Other works in the same line 

were produced, as in [8] and [9], which used GA for parameter estimation of 

complex urban dynamic models, as well as in [10], [11], [12], and [13], in which 

transition rules of CA models have been optimized by genetic algorithms (GA). 

More recently, there has been a profusion of articles dealing with GA for calibration 

and optimization of urban CA models [14], [15], [16], [17]. 

In all above-mentioned cases, a binary approach (urban x non-urban) has been 

adopted. In a diverse way from the previously reported works, the purpose of this 

paper is to deal with the simulation of multiple urban land uses (e.g. residential, 

commercial, industrial, etc.) by means of a GA tool employed to optimize a 

Bayesian calibration of a CA urban land use change model. 

GA fundamentals 

As stated by [18], evolutionary algorithms form a subset of evolutionary 

computation in that they generally only involve techniques implementing 

mechanisms inspired by biological evolution such as reproduction, mutation, 

recombination, natural selection and survival of the fittest. In this process, there are 

two main forces that form the basis of evolutionary systems: Recombination and 

mutation create the necessary diversity and thereby facilitate novelty, while selection 

acts as a force increasing quality [18]. 

Genetic algorithms, in brief, are methods that simulate the processes of natural and 

genetic evolution through computational routines, aiming to solve optimization 

problems in situations where the search space is huge and conventional methods 

have demonstrated to be inefficient. GA are basically structured in an analogous way 

to the biological chromosomes, as initially exposed. The first step consists in the 

generation of a population of individuals, which are characterized by their 

chromosomes, corresponding to numerical values representing a possible solution to 

a given problem. During the evolutionary process, this population is evaluated, and 

each chromosome is awarded a grade that reflects its adaptation capacity to a certain 

environment. The fittest chromosomes are selected, and the least fit ones are 

discarded, in accordance with Darwinian laws. The selected individuals are subject 

to cross-over (recombination) and mutation, generating offspring to the next 
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generation, which corresponds to a complete iteration of the genetic algorithm. This 

process is repeated until a satisfactory solution is found [19]. 

Cross-over basically consists in combining the genetic material of two individuals, 

generating two new descendents, which inherit the parents´ characteristics. In order 

to avoid the anticipated convergence of the genetic algorithm, it is necessary to 

conduct a mutation operation, introducing new regions in the solutions search space. 

Many aspects of such an evolutionary process are stochastic. Changed pieces of 

information due to recombination and mutation are randomly chosen. On the other 

hand, selection operators can be either deterministic, or stochastic. In the latter case, 

individuals with a higher fitness have a higher chance to be selected than individuals 

with a lower fitness, but typically even the weak individuals have a chance to 

become a parent or to survive [18]. 

In order to assess the quality of a candidate solution, an objective function is used. It 

provides to the genetic algorithm a measure of fitness of each individual belonging 

to the population [19]. The choice of an appropriate objective function is crucial for 

the success of the GA performance. A detailed explanation on the objective function 

(or fitness function) employed in this work is presented in the next section. 

Application 

Study Area and the GIS Database 

The GA-optimized CA simulation model was applied to a medium-sized city, Bauru, 

located in the Midwest of São Paulo State, southeast of Brazil. The city comprised a 

total of 236,740 inhabitants in the initial time of simulation (1988), which increased 

to 309,531 inhabitants in 2000. In this period, the annual population growth rate was 

around 1.34%, and it was marked by the expansion of the existing residential areas 

together with the mushrooming of peripheral residential settlements, which have 

been mostly incorporated to the main urban tissue (Figure 1). 

 

Figure 1: Land use map in Bauru in 1988 (left) and 2000 (right) 
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Figure 2: Cross-tabulation map between Bauru land use maps of 1988 and 2000, indicating 

permanence and changes in land use 

Besides experiencing a considerable development concerning the residential use, 

Bauru also witnessed intra-urban land use changes like the increase in industrial and 

services areas (Figure 2). 

The assessment of the total amount of land use change from 1988 to 2000, 

commonly known as global transition rates, was directly derived from a cross- 

tabulation operation between the initial and final land use maps, which provided the 

figures presented in Table 1, associated with the five types of observed land use 

change. 

Table 1: Global transition rates for Bauru: 1988–2000 

 

After the identification of land use transitions and their respective rates, the next step 

concerned the determination of the different sets of infrastructure variables 

governing each of the five types of change, based on heuristic procedures. These 

procedures basically regard the visualization of distinct maps of variables (distances 

in grey scale) superposed on maps of land use transition, so as to identify those more 

meaningful to explain the different types of land-use change. The variables selected 

for modeling are listed in Table 2, and the sets of variables assigned to explain each 

of the five transitions are indicated in Table 3. 
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Table 2: Independent variables defining land use change in Bauru: 1988–2000 

 

Table 3: Selection of variables determining land use change in Bauru: 1988–2000 

 

All data used in this application had a resolution of 100 x 100 m and composed grids 

containing 487 lines and 649 columns, there being a total of 316,063 cells defining 

the region for simulation. 

The GA-optimized Bayesian model of land use change 

The GA-optimized Bayesian model of land use change was implemented in 

Dinamica EGO, a modeling environment that embodies neighborhood-based 

transition algorithms and spatial feedback approaches in a stochastic multi-step 

simulation framework. The parameterization method available at EGO is based on 

the theorem of conditional probabilities. For estimating the land use transition 

probabilities in each cell, represented by its coordinates x and y, an equation 

converting the logit formula into a conventional conditional probability was used. 

The logit corresponds to the natural logarithm of odds, which consists in the ratio of 

the probability of occurring a given land use transition to its complementary 

probability, i.e. the probability of not occurring the transition. This concept derives 

from the Bayesian weights of evidence method, from which the land use transition 

probability can be obtained through algebraic manipulations of the logit formula, as 

follows [20]: 
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where P corresponds to the probability of transition in a cell; i corresponds to a 

notation of cells positioning in the study area, defined in terms of x,y coordinates; α
represents a type of land use transition, e.g. from a class c to a class k, within a total 

of η transitions; Vi
1 corresponds to the first variable observed in cell i, used to 

explain transition α; V 
mα corresponds to the m-th variable observed in cell i, used to 

explain transition α; O (  
 ) represents the odds of transition Tα in the i-th cell, 

expressed by the ratio of the probability of occurrence of Ti
α over its complementary 

probability, i.e., P (Ti
α)/ P (Ti

α); and W+
i,v corresponds to the positive weight of 

evidence for the i-th cell regarding the v-th variable range, defined as: 

 

where P ( V 
mα / T α) is the probability of occurrence of the m-th variable range 

observed in cell i, used to explain transition α, in face of the previous presence of 

transition T α, given by the number of cells where both V 
mα and T α are found divided 

by the total number of cells where Ti
α is found; and P ( V 

mα / Ti
α) is the probability of 

occurrence of the m-th variable range observed in cell i, used to explain transition α, 

in face of the previous absence of transition Ti
α, given by the number of cells where 

both   
   and Ti

α 
are found, divided by the total number of cells where Ti

α 
is not 

found. 

The W+ values represent the attraction between a determined land use transition and 

a certain variable range. The higher the W+ value is, the greater is the probability of 

a certain transition to take place. On the other hand, negative W+ values indicate 

lower probability of a determined transition in the presence of the respective 

variable range. Using the W+ values concerning the several distances ranges of the 

static variables employed in the analysis, the Dinamica EGO model calculates the 

cells transition probabilities according to equation 1. The grid cells are assigned a 

value of probability and a probability map is then generated. In order to evaluate if 

the model is well calibrated, i.e. if the employed explaining variables are appropriate 

and if the categorization of the numerical grids is optimal, this map must present the 

area with the highest transition probability values as close as possible to the areas 

that actually underwent land use change. 

The GA tool in Dinamica EGO retrieves the W+ values and assembles them into 

tables. Each model parameter (W+) represents an allele and will be a record in a 

table that corresponds to a gene. This group of tables is an input to the GA tool. GA 

tool spawns a population based on the genotype passed within a group of tables. 

Inside GA tool, a routine (or functor) called Get current individual is placed to get 

the genes from the individuals of a generation. Other functors are sequenced to get 

the parameters and pass them on to the model. An evaluation (fitness) function is 

coupled with the model output and its result is passed to a functor called Set fitness, 
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which returns the fitness value to the GA tool for the selection process [21]. The 

internal sequence of functors will iterate a number of times as specified by the user. 

When the GA tool terminates, it outputs the fitness of the overall best individual as 

well as the group of tables that comprises its genes. Additional parameters of the GA 

tool are: number of generations; population size; convergence stopping criteria, 

which forces the GA tool to terminate if evolution becomes asymptotical, as defined 

by the convergence limit, which must be achieved within the span of generations set 

by the number of generations; default lower and upper bounds, which set default 

values within which all allele values may vary; customized lower and upper bounds, 

defined by the user; amongst others [21]. 

The GA tool engine is based on the EO computation library and selects parental 

individuals for the next generation using one-to-one deterministic tournament. 

Individuals that take part in it are randomly drawn from the current population 

without depleting it. Cross-over creates 70% of the new generation individuals. Any 

allele in a gene of an individual chosen for mutation can be altered upon 1% 

probability. A new generation is completed by passing it the remaining 29% of 

parental individuals that were submitted to neither crossing-over nor mutation. 

Figure 3 illustrates the graphical user interface of the Dinamica EGO GA tool. 

 

Figure 3: Graphical user interface of the GA model embedded in the Dinamica EGO 

Objective Function and Validation 

For assessing the fitness of the GA tool outputs as well as the accuracy of the CA 

simulation model performance, fuzzy similarity measures applied within a 

neighborhood context were used. The fuzzy similarity method employed in 

this work is a variation of the fuzzy similarity metrics developed by [21], and has 

been implemented in the Dinamica EGO platform. 

Hagen´s method is based on the concept of fuzziness of location, in which the 

representation of a cell is influenced by the cell itself and, to a lesser extent, by the 

cells in its neighborhood. Not consider ing fuzziness of category, the fuzzy 

neighborhood vector can represent the fuzziness of location. In the fuzzy similarity 

validation method, a crisp vector is associated to each cell in the map. This vector 

has as many positions as map categories (land uses), assuming 1 for a category = i, 
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and 0 for categories other than i. Thus, the fuzzy neighborhood vector (Vnbhood) for 

each cell is given as: 

 

where μ nbhood i represents the membership for category i within a neighborhood of 

N cells (usually N=n2); μ crisp i,j is the membership of category i for neighboring 

cell j, assuming, as in a crisp vector, 1 for i and 0 for categories other than i (i ⊂ C); 

mj is the distance-based membership of neighboring cell j, where m accounts for a 

distance decay function, for instance, an exponential decay (m = 2-d/2). The 

selection of the most appropriate decay function and the size of the window depend 

on the vagueness of the data and the spatial error tolerance threshold [21]. As it is 

intended to assess the model spatial fit at different resolutions, besides the 

exponential decay, a constant function equal to 1 inside the neighborhood window 

and to 0 outside can also be applied. Equation 5 sets the category membership for 

the central cell, assuming the highest contribution is found within a neighborhood 

window n x n. Next, a similarity measure for a pair of maps can be obtained through 

a cell-by-cell fuzzy set intersection between their fuzzy and crisp vectors: 

 

where VA and VB refer to the fuzzy neighborhood vectors for maps A and B, and μA,I
 

and μB,i are their neighborhood memberships for categories i ⊂ C in maps A and B, 

as in equation 4. According to [22], since the similarity measure S (VA,VB) tends to 

overestimate the spatial fit, the two-way similarity is instead applied: 

 

The overall similarity of a pair of maps can be calculated by averaging the two-way 

similarity values for all map cells. However, when comparing a simulated map to 

the reference map (real land use in the final time of simulation), this calculation 

carries out an inertial similarity between them due to their areas that did not suffer 

any change. To avoid this problem, the Dinamica EGO team introduced a 

modification into the overall two-way similarity method of DINAMICA, using two 

maps of differences, which present value 1 for the cells that underwent change, and 

0 for those that did not change. In this way, each type of change is analyzed 

separately using pair-wise comparisons involving maps of differences: (i) between 

the initial land use map and a simulated one, and (ii) between the same initial land 

use map and the reference one. This modification is able to tackle two matters. First, 
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as it deals with only one type of change at a time, the overall two-way similarity 

measure can be applied to the entire map, regardless of the different number of cells 

per category. Second, the inherited similitude between the initial and simulated 

maps can be eliminated from this comparison by simply ignoring the null cells from 

the overall count. However, there are two ways of performing this function. One 

consists of counting only two-way similarity values for non-null cells in the first 

map of difference, and the other consists in doing the opposite. As a result, three 

measures of overall similarity are obtained, with the third representing the average 

of the two ways of counting. As random pattern maps tend to score higher due to 

chance depending on the manner in which the nulls are counted, it is advisable to 

pay close attention to the minimum overall similarity value. This method has proven 

to be the most comprehensive when compared to the aforementioned methods, as it 

yields fitness measures with the highest contrast for a series of synthetic patterns 

that depart from a perfect fit to a totally random pattern. 

Simulations and Discussion 

The GA-optimized simulation and the land use change probabilities maps are 

respectively presented in Figures 4 and 5, demonstrating a good performance of the 

model. 

 

Figure 4: The GA-optimized simulation compared to the actual land use in 2000 
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Figure 5: Estimated transition probability s urfaces a nd land use change: 1988-2000 
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Figure 5 (Cont.): Estimated transition probability surfaces and land use change: 1988-2000 

Final Remarks 

Although there is a criticism towards genetic algorithms in the sense that they 

require manifold parameters, the GA tool of Dinamica EGO already provides the 

modeler with default input parameters, which have been previously tested and 

shown to be optimal. Genetic algorithms must be regarded as a heuristic to find an 

ideal solution for a problem, conducted by parallel research and not by an exhaustive 

and troublesome process of trial and error. 
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Abstract 

This paper presents a dynamic urban land-use model using cellular automata. The 

premise of the model is that urban activities interact with each other according to 

their proximity, especially in certain type of areas which have a high potential for 

self-organizing behaviour. The local dynamics of these highly adaptive enclaves 

affect the dynamics of the urban region on a global scale. 

In complex systems the flexibility and adaptivity to changes are crucial for the 

systems dynamic stability. In this study the main focus is on temporal dynamics of 

the pattern formation process, which is studied using an irregular CA-based model. 

It is assumed that by exploring the dynamic states of the model resulting from 

different border conditions it is possible to discover favourable set(s) of rules which 

encourage the existing self-organizing dynamics in the modelled area. 

The results indicate that the different values of the parameters impact greatly on the 

model’s dynamics, and generate different dynamic states of the system. The 

resulting stagnated and various types of dynamic states which emerged with 

different parameter values were analogical to the prior studies among one-

dimensional automata. Most importantly, it seemed that the model could produce 

favourable, dynamic states which may refer to self-organization of the area in the 

model world. The model provides a tool for exploring and understanding the effects 

of boundary conditions in planning process as various scenarios are tested, and helps 

to identify planning guidelines that will support the future complexity of these areas. 

Introduction 

The number of dynamic CA-based modelling applications exploring the complex 

urban phenomena, such as growth or land-use dynamics, has increased in recent 

decades [1], [2], [3], [4], [5]. Most of these models have operated on a rather large, 

regional scale. Despite the well-known lower-scale models of Schelling, Benenson 
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et al. and Portugali, local-scale applications are limited and mainly deal with social 

dynamics [6], [7], [8].  

Dynamic complexity is considered essentially important for the evolution of 

complex urban systems. In the model world, analogically, evaluating the dynamic 

states of the model could help us to understand the premises affecting systems’ 

dynamic, and support the continuity of modelled urban processes [9]. This type of 

dynamics, which results from the different sets of CA rules, has been widely studied 

among mathematical and computational studies, mainly contemplating 1D CA (see, 

for example, [10], [11], [12]). An interesting example of this in urban studies is 

White et al.’s study of self-organisation in urban systems using fractal or radial 

dimension [13], which explicated the process of simultaneously evolving the 

progress of complex and order states using a CA model, and discovered that 

spontaneously emerging nuclei determine future urban patterns. Nevertheless, urban 

models that explore the dynamic states of the system are surprisingly limited, 

considering that complex cities evolve constantly in a continuous, unpredictable 

process that balances between dynamically stabile and unstable phases, and that this 

type of dynamics can be considered as a necessary condition for such systems. In 

particular, there is a lack of approaches that have studied the re-organisation of 

urban contexts in reference to White et al.’s approach. 

A broad range of literature in urban economics and economic geography 

contemplates agglomeration economics, which refers to synergetic or competitive 

activities’ tendencies to form clusters on a regional, nationwide, or global scale. The 

spontaneous agglomeration tendency is important, especially in an innovative 

economy [14], [15]. The location dynamics of several types of activities have not 

been widely studied on the local scale. Several authors have referred to specific 

types of local-scale-demarcated areas in cities, which emerge and self-organise 

according to the agents’ interactions. The authors suggest that these areas can have 

an impact on urban dynamics at a higher level.  

Thus, empirical local scale studies would be of relatively high importance in 

reference to these generative areas. Here, generative features refers to the area’s 

ability to adapt and self-organise: certain mechanisms of autonomous order can be 

perceived. These features are important to all industries, since they enhance the 

economic viability and innovation. We need to study how to support these features 

and study how the changes in the local rules of interaction affect their dynamics. 

Due to their complexity and bottom up-nature of the mechanisms, the computer 

model would be a relevant tool.  

 

The question in this study is what kind of a dynamic model could be able to 

simulate the self-organising dynamics of this type of generative area.  

 

I will answer this question by using a modified CA model to explore the dynamic 

states in the model’s temporal pattern formation processes resulting from differently 

emphasised transformation rules, which simulate various ‘planning decisions’ in this 

urban simulation game. The main dynamics of the model are based on empirically 

perceived tendencies towards agglomeration of similar activities and regeneration 

resulting from over-crowded clusters. The model is relaxed in certain ways. For 
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example, the irregular cell space follows the actual site division, and quantitatively 

(volumes) and qualitatively (activity types) defined transition rules simulate the 

gradual urban processes. The model can help to build different scenarios in planning 

processes, evaluate the impact that planning decisions have on the general dynamics 

of the area, and provide the degree of freedom needed for the crucial self-

organisation of activities.  

The performance of the model was tested using two areas – the Nekala old industrial 

area in Tampere, and the Vaasa old garrison area in Western Finland – as case 

studies. Both are in a process of transition towards a diverse mix of activities. 

Nekala also contains a remarkable proportion of working places of Tampere region, 

and has thus larger economic importance.  

The theoretical framework 

David Graham Shane considers certain type of ‘islands’, the heterotopias of illusion, 

as a dominant element in today’s multinodal city. These areas are self-organising 

and flexible formations within porous boundaries, which are able to order the society 

through flexible and bottom-up-generated norms. Franz Oswald and Peter Baccini 

introduced the term “urban fallow” to refer to areas that emerge from sudden 

changes in society, such as transition of modes of production. They suggested that 

these areas form important resources in city as they can often form a breeding 

ground for the self-organisation of various cultural or economic actors. A certain 

degree of freedom is required to maintain and support the adaptivity, dynamic and 

diversity of these actors. [16], [17], [18], [19]. The target areas are typical fallow 

land in a dynamic process of transforming to a heterotopia of illusion.  

The clustering tendency of firms that occurs on a regional-scale, as cited in the 

literature, is a basic principle of agglomeration economies and has been studied 

widely [20],[21],[22],[23]. Studies have examined the impacts of this tendency at 

different scales, contemplating nationwide, regional or more local concentrations of 

firms. Systematic studies of location logics of different types of activities in one 

specific area are limited. Nevertheless, the empirical findings in Nekala area indicate 

this type of tendency. The premises of the model in the present paper are based on 

these findings [24]. In addition, this dynamic is continuous in time; the area is 

capable of adapting to temporal ruptures in society [25]. Given these results, the 

present study contemplates how the dynamic evolution of the area could also be 

guaranteed in the future.  

A proposed cellular model  

The majority of urban models concentrate on exploring the spatial dynamics of 

regional scale patterns that result from various societal-economic conditions [26]. 

The present paper, on the other hand, contemplates the dynamic states of these 

pattern formation processes in the neighbourhood scale by using a modified CA 

model that operates in a GIS environment. Note that concentrating on the local scale 

interaction does not exclude the obvious principles of location theory in economics. 

It is assumed that basic characteristics of the area, such as good accessibility, low 
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land price and low quality of the environment, have already ‘filtered’ the most 

suitable activities entering the area according to their preferences. The aim is to 

study the dynamics of these ‘filtered activities’, not to find, for example, optimal 

locations to them in general.  

I assume that this specific case of self-organisation enhances the innovations and 

creativity required in all industries today. Here, self-organisation refers to the 

location choices of activities in the model world, resulting from their individual 

decision making in a certain regulatory framework. This generative process occurs 

in a most desirable way within the models’ dynamic, complex state. The system 

transforms and adapts constantly during the iteration. A system that is so far from 

equilibrium oscillates unpredictably between steady and unsteady states. Therefore, I 

propose using a dynamic model to explore the features of the dynamic processes 

during the simulations resulting from various emphasises in the transformation rules 

representing different planning decisions. The variables are the urban activities, 

which are grouped into six categories: housing (U1), retail (U2), services (U3), 

offices (U4), small industry (U5) and warehouses (U6). The type and volume of the 

new actor depends on the type and volume of the activities in the neighbouring site. 

These principles are based on previous empirical studies [27].  

Dynamic cellular states 

Since the 1980s, the dynamic states of one-dimensional CA have been studied 

widely in the fields of mathematics and computational sciences (see, for example, 

[28], [29], [30]) but there have been limited applications in urban studies [31]. In the 

present study, I have applied classifications of dynamics states of Wolfram, Braga, 

Wuenche and Langton. According to these classifications, I re-formulated a two-fold 

classification of various favourable continuous, dynamic states (complex or 

periodic) and stagnating states (infinitely oscillating or completely stagnating states). 

Langton and Wuenche’s concepts of entropy provide a measure of the 

unpredictability, implying the dynamics that can be applied in an analogical manner 

[32], [33]. 

The model configurations: The neighbourhood and cell states 

The lattice of irregular cells in the model follows the legal site division. The cell’s 

neighbourhood contains parcels within 24 meters of the central cell. This 

measurement follows the traditional block size in the area, providing the optimal 

distance for pedestrians, which implies that firms benefit from the proximity of 

competition or synergy between similar activities.  

The floor area of the site is merged into the feature of the cell. The cell’s qualitative 

state results from the combination of six different activities. Each activity has an 

individually defined volume. The quantitative cell states are defined according to the 

utilisation rate, which is a ratio of the used floor area to the current building right at 

the site (Equation 1). 
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Equation 1. Rj = utilisation rate (site j). ∑ FA i,u = sum of the floor area ( u1…u6) on the site I 
and ej is the town plan’s building efficiency on the site j. Aj is the total area of the site j. 

The building right varies between 0.5 and 1.25, following the current plan. The state 

of the cell is then classified according to the utilisation rate into four categories: 

empty, half-empty, half-full and full (Figure 1, Table 1). The quantitative cell state 

affects the site’s future mode of transformation. 

Table 1. Transformation rule 2: The type of transformation of the site depends on the state of 

the site. 

 

 

Figure 1: Cells’ mode of transformation according to their utilisation rates. P-1: ‘empty’, 

FAR=0-0.1; P-2: ‘half-empty’, FAR=0.1-0.3; P-3: ‘half-full’, FAR= 0.3-0.7; P-4: ‘full’, FAR= 

0.7-1. 

Transformation rules 

The basic mechanism the transformation rules are empirically based: synergetic or 

similar activities tend to gravitate to within proximity of each other until the 

clustering exceeding the threshold value causes ‘overpopulation’, leading to re-

location of some activities. 
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The site’s mode of transformation is defined according to the current cell state. Sites 

are grouped into four categories with potential values (P-1 to P-4) indicating the 

probability of different types of changes. The type of future change depends on the 

site’s category. The site may remain as it is (RM), it may fill up (F) according to the 

percentage growth rate (GR) defined by the user, activities on the site may change 

(C) while volume remains the same, or the volume and activities may be totally 

reconstructed (RC) (Figures 1 and 2). The premises are (1) that vacant sites tend to 

fill up mainly with actors similar to their neighbours and the sites are built to use the 

building right efficiently, and (2) that the buildings are eventually replaced as the 

demolition/construction costs become theoretically profitable.  

 

Figure 2: Model’s operation. 

Nekala case 

Firstly, the model was constructed and tested in a case area of the Nekala industrial 

area in Tampere, Finland. This area of approximately 80 sites was planned in the 

1930s for heavy industry and the processing of agricultural products. The area used 

to be in the outskirts of the city, but active urban growth in recent decades has 

caused the area to become surrounded by a dense city structure; its current location 

can be considered quite central. Housing surrounds the area, which forms a unique 

enclave within the urban fabric. The area has proven surprisingly capable of self-

organisation. It has also been able to flexibly adjust itself to the current mode of 

production, from mainly industrial to a gradually more complex mixture of service, 

information technology and cultural industry [34].  

Features and former empirical findings in Nekala [24] have offered adequate 

information for outlining the rules and dependencies for modelling. 

Vaasa case 

The second case study, in which the model was further developed, was an old 

garrison area in Vaasa, Finland. This area is located inside the central area of old 

Vaasa, where the transition from military use to diverse range of other activities has 

occurred quite recently. The area consists of different types of gradually fulfilled or 

historically valuable buildings, large empty sites and buildings beyond repair. A 

wide range of temporary and permanent actors have gradually settled in to the old 
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buildings at the lower price levels. Original and vital culture has started to appear in 

the area, according to the actors’ reciprocal interactions.  

Data on these actors comes from the Tampere and Vaasa Municipality. Numeric 

data (Excel matrix) was combined with location information using GIS. Electrical 

maps (spatial data) are from the Tampere and Vaasa Municipality offices. The 

volumes of activities are from the building permit archives of the Tampere and 

Vaasa municipality.  

Computer runs 

The first simulations were run in a pilot study in Nekala. The resulting pattern 

formation process was relatively dynamic, but it was rather hard to observe the 

dependences between these built-in control parameters and resulting dynamics. 

Consequently, a preference matrix (Table 2) was introduced in the second phase of 

the project in Vaasa. The weight values defining preferred proximity between actors 

could vary within this experiment between 1 and 20, and they were iterated by trial 

and error, which simulated the planning decisions.  

As a result of negotiation process among shareholders in a planning process, two 

sets of rules were chosen for computer runs; one set mainly supported new housing, 

and the other emphasise more mixed uses. The shifts in dynamics were traced 

heuristically using various weight values for each pair of activities. The lengths of 

the iteration were mainly between 500 and 2000. 

Table 2. Preference matrix. µ= 1…20. 

 

Results 

The resulting dynamics varied between iterations and depended heavily on the initial 

values of the matrix. The emerging dynamics can be classified into two main 

categories according to the end state, and two sub-categories describing the 

behaviour in greater detail using the classifications of CA’s dynamic states are 

described in Table 3.  
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Table 3. Dynamic states of the model. 

 

Two types of non-dynamic behaviour were perceived for the iterations that ended up 

in a certain end state; the system could either end up to a certain permanent end 

state, or oscillate infinitely between two or three values on certain sites. Despite 

these few ‘blinking’ cells, the dynamics can be considered static. In both cases, the 

volumes and the sites at issue varied. These dynamics seemed to be correlated with 

high impact from the surrounding housing area, which occurred with relatively low 

matrix values for the housing. The model quite accurately reflected the urban reality. 

Surrounding housing caused pressure on housing development. The stagnating 

progress seemed plausible, yet not desirable. 

As the relative emphasis of the matrix values was shifted from U1xn1…6 to 

U4…U5, the behaviour of the model changed remarkably. First of all, the volumes 

for all activities started to increase gradually and decrease in time, resulting in a 

pulse of higher and lower utilisation rate on the sites; a certain order started to 

emerge within the system. The lengths of these cycles were measurable, and the 

dynamics of these periods depended heavily on the rule set (matrix values). With 

certain rule sets, the system gravitated towards dynamics that were periodic but non-

uniform. These dynamics were diverse, which was contrary to the cases introduced 

above (Figure 3).  

 

Figure 3. Example: Dynamic, periodic states. 
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With a very particular set of matrix values, the behaviour of the model changed 

radically again. The uses U2–U6 remained periodic, although the lengths of the 

cycles and the degree of predictability seemed to slightly change for different 

activities. The most remarkable transition towards a higher degree of complexity 

was perceived with U1. Similarly to the periodic states, the system’s dynamic 

seemed rather stochastic at the start of the iteration, but it soon started to gravitate 

towards a certain cycle. The period could reoccur only twice, but did so for as many 

as 18 times. Several different cycles could occur during one iteration (Figure 4). 

Despite these short, constantly emerging and disappearing cycles, the overall 

dynamics of the system were highly unpredictable, and this oscillation seemed to 

continue infinitely even with remarkably long iterations (up to 2000 time steps).  

 

Figure 4. Example: Dynamic, complex states. 

Although these dynamic states were easy to perceive visually, I also used a more 

exact measurement for validation. Langton found that complex states appear only 

with a very limited set of intermediate entropy values. According to Wuenche, the 

degree of input entropy of the system implies its dynamic state in a similar manner. 

In a totally chaotic system, the entropy is extremely high; in an ordered system, 

rather low; and in a complex system, between these extremes. 

Within this study, entropy values were calculated for the whole system after iteration 

in order to perceive the differences in overall diversity and predictability.  

Six examples of periodic and six of complex behaviour were chosen at random from 

the 60 iterations that passed a visual evaluation test. The entropy for the system was 

calculated according to equation 2. 
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Equation 2. Given    is the relative share        of the entities; t = length of the regeneration 

cycle of an activity measured in time steps.  

The results indicate a clear dispersion between highly ordered and periodic states 

and more unpredictable, complex states. All of the entropy values resulting from 

periodic states were 100 or below, while they varied for complex states from 150 to 

300 (Figure 5). 

 

Figure 5. Entropy values (i) for six iterations visually classified as “periodic”; 50 > i > 100 

“complex”; 150 > i > 200 and with maximal stochasticity; i > 300. 

Since the chaotic state was not perceived within this study, a stochastic set was 

created for comparison purposes, indicating a maximum value (above 300) of 

entropy in the system (Figure 5). 

Concluding remarks 

The static states can be considered analogical with traditional, hierarchical planning 

processes, in which the plan consolidates a certain static position. In the context of 

complex cities, this could imply a burdensome process of constantly updating plans. 

Tolerable plans and dynamic simulations could provide a more flexible planning 

procedure. This modelling experiment indicates that a certain degree of steering is 

necessary in order for the process to achieve the most desirable outcome, such as 

high diversity that enhances the city’s evolution.  
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Discussion 

Complex systems evolve constantly, balancing near a critical point. Only a few 

urban modelling approaches have concentrated on the CA’s ability to produce 

transient, highly organised, complex and constantly evolving structures. In this 

paper, I have introduced a CA-based urban model with which to explore whether 

such a model can discover certain critical states analogical to Langton’s phase 

transitions, and to explore the optimal range of restriction for enabling these self-

organizing dynamics. The results indicated that this model was indeed able to 

produce different type of stable and dynamic, even highly organised states:certain 

initial values supporting the self-organisation and future evolution of the area can be 

discovered. 

The model could provide a useful tool for communicating in the planning process. 

Despite its inevitable inability to predict accurately, it can provide guidelines for a 

future balance between restrictions and freedom, and to identify the dynamic 

features that should not be hindered or over-controlled. The accuracy of the model is 

quite relevant for this general purpose. The model could be used for exploring the 

urban dynamics on the general level, to enhance the understanding of the role of 

restriction to self-organisation and city evolution. 
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Abstract 

Spatial Simulation in the context of Geographic Information Systems has been used 

in the past decades to assess the evolution of spatial variables over time. Two main 

techniques have been applied to perform this kind of spatial analysis: Cellular 

Automata and Agent-based modelling. 

A spectrum of spatial simulation tools exists today to aid implementing a model of 

this genre, ranging from code libraries (Program-level tools), that support the coding 

activity, to pre-built models (or Model-level tools), that can be used by simple 

parametrisation. Somewhere in the middle of this spectrum lay Domain Specific 

Languages (DSL). Nevertheless, the choice of a simulation tool still entails a trade 

off between flexibility and the need of programming skills 

This article presents a different approach to spatial simulation in the GIS domain, 

through the employment of standards from the Object Management Group (OMG) 

to produce a graphical simulation language - DSL3S. This language provides a way 

to describes simulation models at higher level of abstraction, allowing faster 

development, reducing coding errors and increasing model readability. 

Introduction 

Spatial Simulation in the context of Geographic Information Systems (GIS) is used 

primarily to assess the evolution of spatial variables over time. Since the 1990s two 

main techniques have been applied to perform this sort of spatial analysis: Cellular 

Automata [1] and Agent-based modelling [2]. The simulation models produced with 

these methods tend to be quite specific, only usable within the particular field of 

application, largely due to the multi-dimensional and heterogeneous character of 

spatial data. Mainly for this reason, modern multi-purpose GIS packages, such as 

GRASS1 or ArcGIS2, largely lack tools dedicated to this technology. 

                                                                 
1 http://grass.osgeo.org/ 

mailto:luis.a.de.sousa@gmail.com
mailto:alberto.silva@acm.org
http://grass.osgeo.org/
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Developing a spatial simulation model using a general purpose programming 

language presents several burdens. Besides implementing the model, the program 

has to control the flow of execution, manage system resources, and manipulate data 

structures. This leads to several problems [3]: (i) difficulties verifying correct 

implementation; (ii) limited model generality due to difficult modification and/or 

adaptation; (iii) difficulty comparing computer models, usually restricted to their 

inputs and outputs [4]; (iv) problematic integration with other models or tools (e.g. 

GIS or visualisation packages). 

Beyond general purpose programming languages, a spectrum of Spatial Simulation 

tools exists, ranging from code libraries (referred to as Program-level tools), that 

support the coding activity, to pre-built models (or Model-level tools), that can be 

used by simple parametrisation [3] (see Figure 1). Somewhere in the middle of this 

spectrum lay Domain Specific Languages (DSL). 

 

Figure 1: The Spatial Simulation tools spectrum devised by Fall and Fall [3]. 

In spite of this wide spectrum, spatial analysts are still constrained by the trade off 

between the burdens of programming and the strictness of pre-built models; with 

existing DSL not yet exactly freeing the analyst from coding. 

This article presents a different approach to spatial simulation in the GIS domain, 

through the employment of standards from the Object Management Group3 (OMG) 

to produce a graphical DSL. Starting is a short review of the types of simulation 

tools available today, their strengths and shortcomings; then, present difficulties are 

identified and the approach stated. The language is then presented in conceptual 

terms and closing its implementation is detailed. 

Spatial simulation tools 

As stated in the Introduction, three main categories of tools can be devised: 

Program-level, Model-level and DSL-level. This section describes each and briefly 

discusses its main characteristics. A more detail review is provided by de Sousa and 

da Silva [5]. 

Program-level support tools extend the facilities available in general-purpose 

programming languages, usually providing code libraries for building specific 

classes of simulation models. Examples of these tools are Swarm4 RePAST [6] and 

MASON [7]. Higher-level code, usually in a general-purpose object-oriented 

                                                                                                                                        
2 http://www.arcgis.com/ 
3 http://www.omg.org/ 
4 http://www.swarm.org/index.php/Main\_Page 

http://www.arcgis.com/
http://www.omg.org/
http://www.swarm.org/index.php/Main/_Page
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programming language, specifies how objects are used to produce the desired 

behaviour. The main advantage of this type of tools is the encapsulation of the model 

from functionality, relieving the modeller from banal programming tasks and 

potentially producing leaner and easier to read code. These tools are tendentiously 

open source, operational on several computer platforms and providing good level of 

integration with GIS packages. Coupling this characteristic to their wider application 

scope, Program-level tools usually gather around them large communities of users, 

that provide informal, but extensive, support. On the downside, these tools require 

an extra learning effort for their proper use. Beyond requiring relevant knowledge on 

the programming language itself [8], the modeller must learn to some detail the 

behaviour of functions, objects and methods provided by the tool kit, something that 

may require several months of practice [9]. 

Model-level support tools allow the employment of spatial simulation without 

requiring programming. These tools provide pre-programmed simulatio models, 

designed for specific application fields that can be parametrised by the end user. 

They provide fairly straightforward and rapid mechanisms for implementation, but 

invariably constraint the modeller to a specific application framework. Examples of 

such tools are SLEUTH [10], TELSA [11] and AnyLogic5. These tools tend to be 

quite specific, and much of the model behaviour and assumptions are hidden by the 

framework; their use in other application fields is largely impossible. They also tend 

to lack GIS interoperability, in best cases requiring specific data formats. 

Traditionally, they take advantage of market niches providing for the needs of a 

restricted group of users. Thus, in most cases, they are commercial products and 

their users community tend to be weak or non-existent, more often support is a paid 

service. 

Midway between Program-level and Model-level are DSL-level tools that provide a 

specific language specialised for a simulation domain. Compared to Model-level 

tools, these languages make fewer assumptions about the underlying simulation 

model structure. Examples include NetLogo6, SELES [3] and MOBIDYC [12]. The 

use of DSL facilitates modelling and reduces the build-up time of simulation 

models. The programming environment is more constrained that in Program-level 

tools, with behaviour described using simple constructs. Still, the user has to 

understand keyword meaning and how to compose a set of instructions into a 

program. In general this category of tools doesn't provide much support for GIS 

integration, some even totally lacking such functionality. Users communities tend to 

be larger than those of Model-level tools, but on the other hand platform dependency 

is often an issue. 

Difficulties and Approach 

When using a tool for spatial simulation a GIS analyst is faced with some important 

challenges, namelly: 
 

 Most spatial simulation tools require advanced programming skills; 

                                                                 
5 http://www.xj tek.com/anylogic/why_anylogic/ 
6  http://ccl.northwestern.edu/netlogo 

http://ccl.northwestern.edu/netlogo
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 Those that do not require such knowledge are narrow scoped and invariably 

lack GIS interoperability; 

 There's no standard or common language to describe spatial simulation 

models. 

Analysts working with spatial data either come from GIS related areas, like 

Geography or Geodesy, or from the scientific areas of application, such as Biology 

or Economics. In spatial simulation projects is almost mandatory the involvement of 

programmers, skilled in advanced methods like object-oriented technologies. This 

creates a further communication step from model concept to its implementation. 

The adoption of pre-compiled Model-level tools also imposes its burdens. The 

correct implementation of such models is often hard or impossible to verify, since 

most are commercial, or otherwise closed source tools. Their static structure 

imposes strict compliance to their conceptual framework. Experiments with different 

behaviours or the input of alternative spatial information is impossible. 

A simulation model that can only be described by the underlying source code 

becomes inaccessible to most GIS analysts. Source code specificities, such as data 

input/output or control structures, produce a layer of obfuscation that complicates 

the comparison of different models. There are a number of concepts that are 

common to any spatial simulation, such as the succession of time, spatial variables, 

agents or spatial location, but two implementations of a same model can appear 

entirely different if based on different tools, that impose different software 

architectures. 

Our work attempts to address these issues through the development of the DSL3S, a 

Domain Specific Language for Spatial Simulation Scenarios. This language takes 

spatial simulation as a branch of the wider Spatial Analysis GIS field, where model 

inputs originate at least partially from a GIS and whose outputs may also have geo- 

referenced relevance. The same approach shall be taken to models that are 

traditionally implemented with cellular automata and to those based on agents, 

seeking a language abstracted from such technical differences. 

DSL3S is design as a UML profile7
 because it allows the development of simulation 

models through UML class diagrams (to which stereotypes from the profile are 

applied and parametrised with properties). These models are then feed to a model-to- 

code transformation facility producing a ready-to-run simulation model on top of a 

Program-level tool. Then the analyst can chose to either perform tuning at model 

level or further refine the corresponding source code with the assistance of a 

developer. 

The improvements with this approach are: 

 

 Faster development, reducing the lag from prototype conception to testing; 

 Reduction of errors, by reducing (or even eliminating) coding activities; 

 Increased readability, with models described by graphical diagrams; 

 Improved GIS interoperability, by using the modern Program-level tools 

 One model, several implementations, code generation templates can be 

developed for different target Program-level tools. 

                                                                 
7 http://www.omg.org/technology/documents/profile_catalog.htm 
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The following section describes the concepts underlying the DSL3S. 

The DSL3S Meta-model 

Three main pillars have been identified as the underpinning concepts of a spatial 

simulation: Spatial Environment Variables, Animats and Behaviour. Spatial 

Environment Variables are spatial information layers that have some sort of impact 

on the dynamics of a simulation, e.g. slope that deters urban sprawl, biomass that 

feeds a wildfire. Animat is a term coined by S. W. Wilson [13] signifying artificial 

animal; in the context of DSL3S it is used more widely, representing all types of 

agents of change, such as wildfires, urban areas or agents in a predator-prey model. 

Behaviour associates the former two concepts, defining how Animats react to their 

surrounding environment and internal state, examples can be movement or 

replication. 

Beyond these core concepts, other elements can also be found in a simulation, 

particularly context variables. Global Variables define information that is constant 

across the whole space of simulation, such as wind direction in a wildfire model. 

Global variables can eventually change with time, simulating changing environment 

conditions (again wind direction is a good example). Animats can have variables 

themselves, called State Variables that detail their internal state. 

A Simulation is composed by a set of Spatial Environment variables, Animats and 

Global variables; Animats may be composed by series of State variables. Animats 

are also composed by Behaviours that determine how it's internal state evolves; 

behaviours can be function of global variables, spatial environment or the state of 

other animats (see Figure 2). All these concepts are stereotypes in the DSL3S profile 

(see Figure 3). 

 

Figure 2: The core concepts of DSL3S 

The Global Variable is intended to be a simple scalar value that may vary with time. 

It can for instance be set randomly at simulation start and/or made to vary randomly 
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each time step; it can also be fed into the model as a pre defined time-series of 

values, for instance read from an input text file. 

The stereotype for Spatial Environment Variable is essentially a stub for the input of 

geo-referenced data. Each instance shall correspond to a spatial layer with the 

characteristic of having an unequivocal value for each location in space. No 

reference system is made explicit, it is assumed that all spacial data imputed to the 

simulation is bound to the same system and the model effectively operates in an 

ordinary Cartesian plane. For now no distinction between vector and raster data is 

being considered in the meta-model. 

 

Figure 3: The main stereotypes of DSL3S. 

Animats are essentially an aggregation of state variables residing at a perfectly 

identifiable location in space. Different types of Animat can model specific genres of 

actors, e.g. wolves and sheep in a predator-prey simulation. The initial number of 

animat instances and their spatial positioning can be provided by a specific geo- 

referenced data set such as a raster map. By similar mechanisms the initial values of 

state variables can too be set with geo-referenced data. 

The elements presented so far focused on retaining the information needed to run a 

spatial simulation. But more than that is required to capture spatial dynamics, the 

way animats act has to be made explicit. In DSL3S this aspect is modelled with 

specialisations of Behaviour, more precisely: Initiate, Move, Replicate, Harvest 

and Perish. 

Initiate captures the conditions under which a new instance of an animat can appear 

in the simulation, the act of "birth". An example may be an urban development 

simulation where the emergence of a new urban spot is possible in an area that meets 

a certain set of criteria like distance to transport infrastructure or topography. 

Probabilities of birth can also be defined with properties. 

Move relates an animat with one or more spatial environment variables or other 

animats, determining the locations that are more or less favourable to be in. Specific 
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properties allow to weight the relevance of each class related to a Move behaviour. 

For instance, in a predator-prey simulation the movement of a "sheep" animat may 

be positively weighted in a relationship with a "grass" class and negatively weighted 

in a relation with a "wolf" animat. 

Replicate captures behaviours where an animat replicates itself to an adjacent 

location, such as a wildfire spreading or an urban area sprawling. Just as with 

previous behaviours, the objective is to capture the conditions under which an 

animat may originate a sibling into its neighbourhood. Properties may weight the 

influence of spatial environment variables (e.g. fire spread) or set thresholds against 

the animat's internal state (e.g. biological reproduction). 

Harvest an act on which an animat may change other elements in the same spatial 

location; it can act on a spatial environment variable, such as a wildfire consuming 

bush, or by seizing another animat as in a predator-prey simulation. In this class 

properties parametrise the changes of this action on both harvester and harvested. 

Perish defines the circumstances under which an animat instance may cease to exist 

during the simulation (e.g. "starve"). This class defines minimum thresholds related 

to animat internal state that determine conditions for the endurance of its existence. 

It may be associated with the animat class itself to set conditions by which an 

instance may cease to exist due to crowding. Associations with spatial environment 

variables may provide further conditions for existence. 

 

Figure 4: The five behavioural stereotypes. 

This is just a selection of behaviour classes that provide a set of core procedures for 

animat conduct. In their seminal work, Epstein and Axtel [14] conceive a 

considerably larger set of behaviours in a spatially bound agent based simulation, 

including elaborate processes such as trade and cultural exchange. While interesting, 

these intricate behaviours are less common in pure GIS applications (where the 

dynamics is captured at a higher level of geographic abstraction) and more keen to 

Social or Economics studies. However, the addition of further behaviours will be the 

main process of extension of DSL3S, answering to new requirements if necessary. 
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Views and Icons 

DSL3S models can become visually intricate if a single diagram would de used to 

represent a complex spatial simulation scenario. To avoid such difficulties distinct 

Views are proposed to better organise models (see Figure 5): 

 

 Global View - contains the simulation settings that do not have spatial 

realisation. Includes Simulation and Global classes, defining parameters such 

as the number of time steps to run, spatial extent or result output. 

 Spatial View - where all the Spatial Environment variables are configured, 

defining the geographic inputs to the simulation. 

 Animat View - defining animat internal state. In simulations scenarios with 

more than one animat several animat views can be used. 

 Behaviour View - contains only the classes with specialisations of the 

Behaviour stereotype applied on, but also showing composition links to all 

classes that parametrise each behaviour. A dedicated view for each different 

behaviour is proposed. 

 Simulation View – a simple package diagram that aggregates all other 

views. 

 

Figure 5: The proposed Views scheme for DSL3S. 

Beyond these views a set of icons is also proposed to make the language visually 

explicit (see Figure 6). For Simulation, Global Variable and Spatial Environment 

Variable direct pictorial representations of their concepts are used. For the 

stereotypes Animat, State and Behaviours are proposed abstract symbols intending 

to create mental associations with a simulation model. 
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Figure 6: The proposed icons for DSL3S stereotypes. 

Implementation 

The reference architecture for the DSL3S language defines three components, all 

based on open source technologies (see Figure 7): 

 the UML profile, supported by the Papyrus add-on for the Eclipse8 IDE; 

 MASON, a Program-level tool supporting the generated code; 

 Model-to-code generation templates, developed with Acceleo, another 

Eclipse add-on. 

 

Papyrus 

Papyrus9 was a project started by the Commissariat à l'Énergie Atomique in France, 

with the aim of producing an advanced graphical editor for the UML language, 

supporting particular DSL, especially SysML10, a language for systems engineering. 

It evolved as an open source product based on the Eclipse Modelling Framework11 

(EMF), a tool-kit that supports the edition and visualisation of structured models 

defined in the XMI language and provides a set of Java classes that facilitate its 

manipulation. Papyrus eventually evolved to support the development of ad hoc 

DSL, through the definition of UML profiles. 

                                                                 
8 http://www.eclipse.org 
9 http://www.eclipse.org/modeling/mdt/papyrus/ 
10  http://www.sysml.org/ 
11 http://www.eclipse.org/modeling/emf/ 

http://www.sysml.org/
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Figure 7: The technologies used to implement DSL3S. 

In 2009 Papyrus merged with Eclipse altogether, becoming the forefront graphical 

UML editor add-on for this popular IDE, replacing other assorted tools with fewer 

capabilities. It is presently close to fully support the version 2 of the UML language, 

coming to be one of the most advanced tools available for the purpose. Beyond 

SysML, Papyrus includes a series of other DSL dedicated to domains like embedded 

systems or automotive systems. 

Acceleo 

Acceleo12 is an open source code generator created by the French company Obeo, 

first released in 2006, as a plug-in to Eclipse 3.0 and 3.1. It is also built on EMF, 

facilitating the interoperability with several other modelling tools based on the same 

technology. The following year the Eclipse Foundation took Acceleo as an official 

project. In latter versions Acceleo adopted the MOF Model to Text Transformation 

Language13 (MOFM2T), another OMG standard. Though not yet fully 

implementing this standard, the model-to-code generators produced with Acceleo 

are today some of the closer to the scheme proposed by the OMG. 

The code generation mechanism is based on special files called templates, which 

define the text output to produce from a graphical model. They are composed by 

regular text plus a series of annotations that are substituted by values and names of 

model elements during generation time (see Table 1). Traditional computational 

operations such as branches or loops are also possible to include with specific 

annotations, allowing the production of more complex outputs. Templates can be 

articulated through an inclusion mechanism, whereby a master template can make 

use of several other templates creating a generation chain. When fully developed, a 

generation chain can be transformed into an independent plug-in for Eclipse, 

facilitating its portability and application. 

Acceleo 3 fully supports code generation from meta-models, identifying stereotypes 

applied on classes and providing access to properties. The later isn't based on 

MOFM2T, but provided by a service, essentially a Java method that browses 

through the UML2 object model associated with each class. 

 

                                                                 
12 http://www.acceleo.org/pages/introduction/en 
13 http://www.omg.org/spec/MOFM2T/1.0/ 
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Table 1. A simple Acceleo template and its output when used on a class named “Clients” with 

the stereotype “Table” applied on. The “hasSteretype” query is an external service. 

 

MASON 

MASON (the acronym for “Multi-Agent Simulator Of Neighbourhoods”) aims to be 

a light-weight, highly-portable, multi-purpose agent-based modelling package [15]. 

MASON is a relatively new tool, with the first version coming to light in 2003; 

being somewhat different for tools developed in the 1990s. Its objects are architected 

in such a way that simulation models are totally isolated from visualisation and 

input/output mechanisms. MASON is fully written in Java and freely distributed, 

hence it produces programs that are highly portable between different operating 

systems, not only running alike but also presenting identical results. Comparative 

results have shown that in general MASON is likely the fastest of the main Program- 

level tools. 

MASON was initially used for artificial scenarios, evolving as a text input/output 

tool, lacking graphical facilities [7]. These features are now fully available, and 

improved with the usage of Java3D. Supported by extensive documentation and a 

relevant comunity14, MASON has been adopted more widely. 

GeoMason15 is a rather complete extension for geo-referenced data. Input and output 

functionality is available for both raster and vector data, relying on third party 

packages: the Java Topology Suite for geometry manipulation, GeoTools for vector 

interaction and GDAL for raster formats. 

Its light-weight infrastructure, extensive documentation, and easy of integration 

through Eclipse made MASON an obvious choice for validating DSL3S. 

Summary and future work 

The application of spatial simulation techniques to the GIS realm is still today 

locked in the choice between versatile tools that require advanced programming 

skills and easy to use pre-built models that force relevant compromises of 

transparency and scope. Several DSL, such as NetLogo or MOBIDYC, have been 

                                                                 
14 http://cs.gmu.edu/~eclab/projects/mason 
15 http://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/ 
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tried in this field but invariably producing imperative languages with compromises 

of their own. 

DSL3S proposes a new approach to this subject, with the development of a UML 

profile language and a code-to-model transformation infrastructure, producing 

simulation models based on a Program-level tool. This scheme promotes faster 

model development, reduces coding errors and increases model readability through 

graphical m o d e l s . Relying on MASON, it guarantees interoperability w i t h  

geographic data, while largely dispensing coding activities. The language is being 

developed on the Eclipse IDE, using the modelling ad-ons Papyrus and Acceleo. 

In the near future DSL3S will be assessed through its application to real world 

scenarios. This interative process will allow to understand how far it can go in its 

current form and how necessary new behavioural stereotypes may be. 
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Abstract 

Air quality is a major concern in urban areas worldwide not only because of its 

severe health impacts but also due to its influence on living quality and residential 

behaviour. The subsequent increasing demand for residential areas in the greener 

fringes of urban agglomerations fuels the discussion about sustainability in future 

cities. As traffic emissions are acknowledged to be the major source of pollutants in 

an urban environment this residential trend has triggered research to further 

understand the influence of urban structure on air quality. In order to meet 

sustainable growth, many researchers argue that in a global perspective a compact 

city is the desirable urban form due to less traffic distance, just in contrast to the 

trend towards urban sprawl. However, quantifying the link between urban structure 

and air pollution has only been the aim of few research studies so far. Thus, our 

objective is to deepen the understanding of this link by coupling a micro-economic 

CA urban growth model with a traffic emission model and a CA air pollution model 

while focussing on the impact on residential population. 

In order to simulate peri-urban growth of a theoretical city we use the CA economic 

model S-GHOST, which takes into account residential preferences for green space 

and social externalities and accordingly generates the spatial pattern of houses, green 

space and road network. Based on calibrated self-organized long-run urban forms, 

the emitted traffic pollutant concentrations caused by commuters to the CBD are 

estimated within the generated road network and dispersed using a CA dispersion 

model. The CA approach accounts for the dynamic behaviour and the substantial 

spatial variability of the pollutants. Based on gravity, wind velocity and the 

characteristics of neighbouring cells, the lattice gas CA simulates pollutant 

transportation, collision and dispersion. Since we are interested in the effects of 

urban structure on the population in the residential locations, resulting exposure 

concentrations are calculated and compared for different equilibrium urban forms. 

Not only the global perspective on exposure are of interest to us but essentially the 

local perspective to understand the factors influencing air quality within urban 

structures. How do the residential preferences like green space and social amenities 

influence air quality besides, for instance, transportation costs? Additionally, the 

question of scale and time is addressed: which urban structure provides 

sustainability of cities in a long-term perspective on city but also population level? 
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Introduction 

Air quality is a major concern in urban areas worldwide not only because of its 

severe health impacts but also due to its influence on living quality and residential 

behavior. The subsequent increasing demand for residential areas in the greener 

fringes of urban agglomerations fuels the discussion about sustainability in future 

cities. As traffic emissions are acknowledged to be the major source of pollutants in 

an urban environment this residential trend has triggered research to further 

understand the influence of urban structure on air quality. In order to meet 

sustainable growth, many researchers argue that in a global perspective a compact 

city is the desirable urban form due to shorter travelling distances, just in contrast to 

the trend towards urban sprawl. However, if energy consumption (e.g. [1]) and total 

emissions (e.g. [2]) can be shown to be reduced with more compact urban forms via 

reduced car use at regional scale, compactness is still debated ([3],[4],[5]). 

Moreover, population exposure to traffic pollutants is rarely directly considered, 

while it might well increase with compactness due to joined concentration of traffic 

flows and population and because of shorter trips thus with colder and more 

polluting engines. In addition to triggering health problems, the compact city might 

therefore well reduce the attractiveness of the more central areas and favor exurban 

residential choice, in contrast to an anti-sprawl policy. Modeling the link between 

urban structure and air pollution has only been the aim of few research studies so far 

[6], [7]. Our objective is to deepen the understanding of this link. We assume that 

how cities are locally designed is key to resolving the aforementioned compact city 

contradiction. We also believe that residential preferences should be explicitly 

considered in order, in the longer run, to assess how households trade-off pollutants 

and other locational attributes. In this paper we couple a micro-economic CA urban 

growth model with both a traffic emission model and a CA air pollution model while 

focussing on the impact of residential preferences and local designs on air pollution 

exposure of residents.  

Methodology 

We chose a purely theoretical modeling approach, combining factors we found most 

relevant in a sequence of four models: (i) residential choice (ii) traffic generation 

and pollutants emission, (iii) pollutants dispersion and (iv) population exposure 

model. 

Residential Model 

In order to simulate peri-urban growth of a theoretical city we use the CA economic 

model S-GHOST [8], which takes into account residential preferences for green 

space and social externalities and accordingly generates the spatial pattern of houses, 

green space and a road network. Urban structures result from the process of people 

choosing a residential location by maximizing their utility subject to a budget 

constraint. The process reflects a trade-off between a location with surrounding 

green space and proximity to public goods amenities, while minimizing 

transportation costs to work in the CBD. The model uses a cellular automata 
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approach in the sense that the land uses of neighbouring cells partly determine (the 

conversion of) the state of each cell simultaneously. In each step, household’s utility 

and bids are calculated (in line with Alonso [9]) and accordingly originally 

agricultural land is either converted to residential areas or roads or remains green 

space. The city is an open system with free in-migration that eventually reaches a 

long-run equilibrium where all agents have maximized utility so they have no 

incentive to move into or out of the area. A final structure represents the results of a 

growth process considering residential preferences. The model has been calibrated 

on parameters for a typical French city [10] with a resolution of 730m. Figure 1 

shows the land use obtained from this benchnmark calibration as well as a situation 

where residential prefrences for green space are higher, thus leading to more sprawl. 

 

Figure 1: Resulting urban structures around a CBD for benchmark calibration in S-GHOST 
model after Caruso [8]; white: green spaces, grey: residential areas, black: road network 

For this study, the model is disaggregated to a 146m resolution in order to improve 

its approximation towards reality and to allow for the simulation of different local 

designs. These designs are related to how households would prefer to position 

themselves in relation to the main distributor road. A conditional disaggregation 

process is applied on the residential areas in the S-GHOST model output so that 

local and city-wide residential choices are considered, resulting in structures of 

varying degrees of compactness (Figure 2).  

 

Figure 2: Illustration of residential preferences on city-wide (social & green) and local (relation 

to main road) scale; local preferences termed short as “back”, “front” and “road” respectively 
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Traffic and Emission Model 

Based on these self-organized urban forms, the emitted traffic pollutant 

concentrations caused by (one-way) commuters to the CBD are estimated within the 

peri-urban environment. Traffic emissions are modeled based on average speed, 

traffic activity defined by population densities, trip length as the shortest path to the 

CBD from each residential cell and engine operation mode. The respective equations 

for hot and cold emissions are taken from the MEET Project [11] and, where 

necessary, European averages are chosen as reference values for emission 

calculations.  

Air quality is modeled by looking at pollutant concentrations in different discrete 

time steps, meaning during a time window1 up to the moment when every resident 

has reached the CBD. Thus, we simulate the commuting process by sending the 

residents to work in a staggered process and calculate the emissions respectively: we 

assume that the residents living the furthest away from the CBD leave first since it 

takes them more time. However, in order to avoid arrivals in the CBD all at the same 

time and, thus, to reduce congestion potentials, staggered numbers of people at other 

distances start as well in the same time step2. 

Pollutants Dispersion Model  

Next, transport, dispersion and removal processes are modeled which the pollutants 

undergo after being emitted on the road network. Earlier studies point at the 

complexity of the modeling process which also inspired many researchers to look 

out for more simplistic approaches with nonetheless comparable results. One of such 

attempts is the cellular automata air pollution model developed by Guariso and 

Maniezzo [12] and further elaborated by Marín et al. [13]. The CA approach 

accounts for the dynamic behavior and the substantial spatial variability of the 

pollutants. Based on gravity, wind velocity and the characteristics of neighboring 

cells, the CA simulates pollutant transportation, collision and dispersion. Due to its 

simplistic and flexible representation based on a few numerical relations and its 

nonetheless proofed comparability to standard complex air quality models [12] this 

model serves as an inspiring approach to proceed with the calculated emission 

concentrations on the roads. Instead of originally three dimensions, it has been 

modified to be applied on 2D.  

Inputs to the dispersion model are the emissions on the road network in each time 

step, added to the current dispersed emissions. For each time step when cars are 

passing through one cell the new situation is calculated3. Considering a Moore 

                                                                 
1 We assume an imaginary time window of ~45 min in the morning between 8:00 and ~8:45 
since it takes one car 13 seconds to pass one cell (146 m) at an average speed of 40 km/h. 
2 Starting at the largest distance with all people living this far from the CBD, staggered in 5%- 

steps with smaller distances: residents living the maximum distance away ALL start in the first 
time step while staggered  numbers (5% steps) of residents at all other distances start 

respectively as well; in the second time step, residents at the second largest distance. ALL start 

while 5% less start at the third largest distance and so on. 
3 Due to simplistic reasons, it is assumed that one time step (vehicles passing one cell) is 

identical to one iteration of pollutant dispersion. This seems justifiable since vehicles move 
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neighborhood on 2D an update rule is applied in each time step on each cell in order 

to model horizontal, Gaussian-like transport based on wind speed, wind direction 

and (isotropic) diffusivity [14]. Vertical transport is indirectly accounted for by 

assuming a certain amount of concentration being removed in one time step due to 

gravity and buoyancy. Building effects, meaning diversion of air flow due to 

obstacles, is treated as well in order to consider land uses and urban structures. In 

residential cells a percentage partition of the modeled concentration (based on wind 

and diffusivity) into the neighboring cells which are not occupied by buildings is 

assumed. This partition depends on the magnitude of building effects (scaled 

logarithmically and based on population densities) and is, thus, indirectly linked to 

building height and distances. Chemical processes are not included. 

Exposure Model 

Exposure is then estimated per residential cell. Since air flow is diverted by each 

residential location (obstacle), exposure cannot be derived directly but by 

considering the air quality in all its surrounding locations: calculated is the average 

concentration from the neighbouring cells of each residential location (applying an 

averaging filter) and the average across all time steps (Equation 1). 

 

 ̅    
 

  
∑∑   

 

   

 

   

   (Equation 1) 

where   

 ̅   is the mean exposure per residential cell j in relation to  

the number of residents 

n is the number of time steps 
 d is the maximum distance from the CBD of a residential location 

    is the emission concentration in one cell j per time step n, considering also the 

8 neighbouring locations (Moore) 

   is the number of residents I in the residential location 

Results and discussion 

We ran the model for CO as one of the major air pollutants caused by road traffic. 

The analysis indicates that different local residential preferences implicate different 

overall exposure levels and alter the distribution of air pollution across the distances 

to the CBD. When people are only located along a main distributor road the air 

quality situation is worst. The further people live away from the CBD, the less they 

are in all designs exposed to air pollution. However, the compact scenario is linked 

to higher exposure levels at the same distances across the structures. More compact 

local designs implicate higher densities and less land cover change which implies a 

concentrated number of residents exposed to air pollution in one residential location. 

On the contrary, in a sprawled local development, few residents are exposed to air 

pollution per cell. 

                                                                                                                                        
faster with the assumed parameters (vehicle speed, resolution) as pollutants could pass one cell 

(wind speed).  
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In short, compact structures expose more residents to higher emission concentrations 

but then vary to a larger extent with distance. Against the expectation that more 

compact structures reduce the need to travel, sprawled local arrangements outweigh 

this increased travel by their lower population densities and greater distance to main 

roads and, hence, also emission sources.  

The distribution patterns of each local arrangement in relation to distance (see 

zoomed-in boxes in Figure 3) reveal that the exposure values vary not only with 

changing distance to the CBD but also within a local neighborhood: due to local 

design of land uses and population density, exposure values vary from one distance 

to another, seemingly more for the two dead-alley designs than for the more 

compact arrangement. This indicates that the residential location within a local 

arrangement is also influencing besides the distance to the CBD. Figure 3c) shows 

the average population exposure in function of distance which is simulated when 

residents only live along a main distributor road. Exposure varies here less within a 

local design due to the underlying constant local design and the distance decay is 

less strongly visible. This depicts clearly the influence of local design of population 

density and land uses, based on residential preferences. Distance to the CBD is a 

relevant factor in terms of population exposure but its influence varies also with the 

city structure and is not the only explanation for differences in population exposure 

within an urban area.  
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Figure 3: Mean exposure to CO across all distances to the CBD in µgm-³pp, for the city-wide 

residential structure "sprawled" and the three local designs a) “back” b) “front” 3) “road” (as 
explained in Figure 2) 

Figure 4 shows the average exposure to CO across an urban area and indicates as 

well that local design matters. 

 

                                  a) 

 
                                 b) 

  
 

                                 c) 
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Figure 4: Mean exposure to CO per residential structure/local design, averaged across the 
entire urban area and all time steps 

On city-wide scale, different preferences for social and green amenities show also 

that on average compact structures result in higher average exposure values whereas 

more sprawled structures are linked to lower exposure values, independent of the 

local arrangements. This means that moderate preferences for both, social and green 

amenities, depict the worst overall situation in terms of air quality. As the preference 

for green space increases, also in relation to the preference for social amenities, less 

residents are exposed to air pollution due to low population densities. The more 

sprawled an urban area, the lower the average exposure. This result lies in contrast 

to other studies (e.g. [6] and [7]) and triggers the discussion about both, findings and 

methodologies.  

Compactness in other studies reveals lower exposure values because compactness is 

linked to change in mode of transportation and travel behaviour, whereas this study 

does not distinguish between different modes of travel and other factors like 

congestion linked to residential structures. Therefore, compact development induces 

more commuting traffic in a smaller area where also more people are affected due to 

higher population densities. These findings suggest that beneficial effects from 

compactness are on the one hand limited to a certain density threshold beyond which 

density reveals worse air quality and on the other hand are linked to changes in the 

composition of travel mode choices. Hence, residential structures influence exposure 

but important is also the link to other factors, such as travel behavior in order to 

reduce vehicle travel after Stone et al. [15]. This is akin to what Neumann [4] states: 

"conceiving the city in terms of form is not sufficient [...] instead, conceiving the 

city in terms of process holds more promise in obtaining the elusive goal of a 

sustainable city". 

Figure 5 displays a comparison of average population exposure relative to the 

distance to the CBD in each structure and design. It shows the general trend of 

exposure, resulting from a regression analysis. Keeping in mind that the figure 

indicates a generalization, the same as above can be concluded: higher preferences 

for green space yield overall lower exposure levels whereas balanced preferences 

tend to expose residents to more emission concentrations, at least for compact local 

designs. Although compact structures expose more residents to higher emission 

concentrations close to the CBD, average values further away from the city are 
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lower due to less distance driven and an overall smaller expansion of the city 

boundaries. Exposure decreases faster with distance in compact development due to 

higher population densities but the same number of residents in the total area. On the 

contrary, more sprawled development implies relatively less variation across 

distance. Hence, up to a certain distance, sprawled development seems better but 

residents living in continuing sprawled development are more exposed at greater 

distances. Therefore, compact development limits the area where exposure levels are 

higher indicating a threshold to the benefits of sprawled development: up to some 

extend it results in better air quality but after a distance threshold this benefit is 

outweighed by increased exposure compared to compact structures. Sprawled 

development reduces overall exposure close to the city but does not decrease as 

much with increased distance. Not having considered congestion in the model is an 

explanation for the good result of sprawled development. 

 

Figure 5: Regression on average exposure to CO per residential structure/local design and 
distance to the CBD 

The scale at which compactness is favored does matter in the discussion of urban 

form and air quality and that the answer to the research question remains complex 

and twofold, preventing the provision of a best-practice solution.  

A widely known discussion is held about the question whether air quality is mainly 

determined by the distance travelled, meaning compact structures reduce the need to 

travel and therefore directly provide overall better air quality situations than 

sprawled structures [15]. The here analyzed results comply partly with this 

discussion since exposure levels generally decrease with increased distance to the 

CBD, but additionally indicate the need for further distinction: although the distance 

travelled certainly influences the level of exposure, compact structures are linked to 

higher exposure despite less distance travelled. Further outside the CBD where 

population densities are lower, the distance travelled impacts greater, leading to 

higher exposure levels for sprawled development. Hence, the distance travelled 

determines the general level of exposure but is not the only criterion for local 

variations and is linked to congestion potentials and other factors. This goes along 
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with findings from, for instance, Clark et al. [16] who state that "urban form could 

play a modest but important role in achieving long-term air quality goals".  

Still, within the modeling process certain parameters are already linked to distance. 

These are, for instance, the predefined departure schedule for the commuting trips, 

the emission calculation and the underlying cold distance per pollutant type as well 

as wind speed which influence the results but do not determine the discovered 

variations as such. Stone et al. [15] address travel speed and cold start distributions 

besides distance as explanations for varying emission concentrations which are, in 

turn, coupled with residential structures. 

Analyzed is the interrelation between residential preferences, residential structures 

and average exposure. Although there is an influence detected and quantified, the 

degree of influence of urban form on air quality in relation to other factors is still to 

be discussed: are other social or socio-economic factors, meteorology, topography 

etc. more determining in relative terms? The promotion of public transport, for 

instance, is a favored strategy to reduce traffic emissions. In comparison to this 

strategy and to car-dependency, a deliberate residential structure might also seem 

relevant but may not be as effective without linkage to other factors, as the results of 

this study and the discussion show. Socio-economic factors have stronger bearings 

on mobility behavior than spatial characteristics, which is linked to residential 

choice and preferences [5]. The impact of residential structures can, thus, not be 

isolated from broader societal and technological trends as already explained in 

comparison with other studies [6].  

Modeled are only traffic-emissions from residents commuting by car in the morning, 

based on a predefined departure schedule. Neither regular traffic passing through the 

area nor non-work trips are included in the simulation. Against this background, the 

seemingly small changes detected between the different structures appear relevant. 

Certainly, car dependency is due to simplifications overestimated which modifies 

the results but unchains the approach from travel mode dependencies and, therefore, 

points at the influence of the linkage of travel mode and urban structure. Local 

designs do not only influence the environment directly but also indirectly through 

travel behavior and spatial distributions of land cover which are mirrored in the 

trends of residential choices [16]. 

Likewise important are the resolution of the model and the grid size to which 

residential areas are disaggregated and therefore local designs are considered. This 

question of the degree of aggregation and, thus, scale has a noticeable influence on 

the model, reflected in the scale on which preferences are considered. This is an 

important finding and points at the necessity to distinguish in the discussion about 

residential choice. Further, emissions from all vehicle sources in each grid area are 

combined together into a larger area source, assuming that emissions are uniform 

over that particular area.  

Placing the study within its limited context, it proofs the compatibility of the model 

types and the findings from the here presented simplified modeling approach open 

up the field for further discussion and extension of this research in spite of the 

assumptions discussed. 

 



Schindler and Caruso, Effects of peri-urban structure on air pollution 

Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 | 291 

Conclusion 

We investigated the link between residential preferences and traffic-induced air 

quality within the discussion about sustainability and the design of future cities. We 

analyzed whether the preferences for social and/or green amenities within residential 

choice and, thus, residential structures, impact air quality in an urban area. 

Following state-of-the-art research by e.g. [6], our work expands the research by 

modeling not only the influence of city-wide residential structures but also of local 

designs and their induced population exposure from commuter's traffic.  

A theoretical modeling approach has been developed, coupling a residential choice, 

traffic generation and pollutants emission, pollutants dispersion and population 

exposure model. Running the model on different residential structures with varying 

degrees of compactness city-wide and locally for CO indicates that residential 

preferences do matter.  

Driving factors are hereby scale and distance to the CBD at which preferences are 

considered, although distance is not the only determining factor. With increasing 

distance to the CBD, population exposure decreases, no matter the degree of 

compactness. However, the difference across distances is higher for more compact 

structures compared to sprawled development. Preferences for green and social 

amenities implicate different impacts on population exposure which points at the 

importance to distinguish between local and city-wide designs. Besides state-of-the-

art findings that the overall city form impacts air quality, this study shows that also 

local designs do play a noticeable role. Our study suggests that the overall city form 

is most influencing on air quality, followed by intra-urban residential structures and 

local designs.  

In contrast to findings from other studies compact development with high population 

densities entails on all scales highest population exposure to CO. This suggests a 

limit to the gains of compact structures due to e.g. more trips with colder engines. It 

triggers the discussion on the benefits of compactness in spatial planning and adds a 

critical viewpoint on the belief that more compactness in planning is directly linked 

to better air quality in urban areas. Structure needs to be linked with, for instance, 

varying travel mode respectively in order to reduce exposure to air pollution. 

Although elaborate urban structures comprise the potential to mitigate air pollution, 

they do not ensure better air quality alone but have to be coupled with other 

strategies. 
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Abstract 

With an increasing interest and use of CA-based land use models in the planning and 

policy practice, calibration and validation gain in importance. Calibrating CA 

models, however, remains an ongoing challenge. Despite several attempts to develop 

(semi-)automatic approaches [1, 2], manual calibration, especially for calibrating 

land use change models with multiple dynamic land uses, remains the common 

practise [3]. Although there are numerous papers that discuss CA models, only few 

cover their (manual) calibration process, and a common knowledge base seems to be 

lacking. This presentation aims to start such a knowledge base by presenting a 

method for calibrating CA-based land use models, which has been developed over 

the past 25 years and builds on work by a number of people who have calibrated the 

Metronamica land use model [4, 5, 6] in its current or preliminary forms [7, 8, 9, 

10]. In this methodology the calibration process is approached broader than the 

setting and fine-tuning of parameters, and includes all steps related to finding an 

appropriate parameter set and assessing its quality. 

The calibration process follows a number of steps in line with common calibration 

practices and the characteristics of CA-based land use models: 

1. As part of the data analysis the current situation and historic developments 

are analysed. This includes analysing the temporal change in total area 

surface for various land uses as well as the change in landscape structure. 

Regarding the latter, metrics such as the clumpiness index [11] and the 

rank size distribution [12] are used in conjunction with a visual inspection 

of the developments. Furthermore, the enrichment factor is used to analyse 

the over- and underrepresentation of certain land uses in the 

neighbourhood of changed land uses [10]. 

2. Model set-up includes a set of choices relevant for setting up the model to 

a specific region and context. In CA-based land use modelling main 
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choices are related to the decision on the area extent, the applied resolution 

and the selection of land use classes to be modelled, where finding a 

balance between providing additional information and creating a false 

sense of accuracy is often a crucial point of discussion [13].  

3. During the calibration, parameter values are set and fine-tuned and 

subsequently the model is assessed on its behaviour and results, frequently 

over a historic calibration period. Difficulties in calibrating CA-based land 

use models mainly relate to the large number of parameters that need to be 

set, the limited availability of time series of land use maps, and finding 

objective ways to assess the quality of the calibration. Regarding the latter, 

progress has been made over the past years, which has resulted in the use 

of neutral models to act as a benchmark for quality assessment [14], 

together with the use of objective measures to complement the more 

subjective visual assessment. To assess the quality of the calibration we 

take into account the predictive accuracy, which is the ability of the model 

to accurately simulate actual land use patterns; and the process accuracy, 

the extent to which the modelled processes are consistent with real world 

processes [15]. Main indicators used for assessing the quality of the 

calibration are indicators for location agreement, such as Fuzzy Kappa 

[16] and Kappa Simulation [17]; indicators for landscape structure 

agreement, such as the clumpiness index [11], the fractal dimension [18], 

the rank size distribution [12], and the enrichment factor [10]; and visual 

inspection. 

4. During the validation, the model's behaviour and results, based on the 

parameters settings obtained during the calibration, are assessed over a 

data set independent from the one used as part of the calibration. This 

usually results in an evaluation of the model's behaviour over a different 

historic period; although other independent data sets are equally valid, see 

e.g. [19]. Assessment criteria are the same as for the calibration.  

5. Finally the model is tested and evaluated on its long-term behaviour, 

which includes a long-term simulation with the calibration parameters, a 

number of tests with extreme scenarios to assess the robustness of the 

model and a number of tests to assess the sensitivity of model results on 

small changes to the parameter settings. 

 

During the presentation the details of the methodology will be discussed using an 

application to Madrid, Spain.  
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Abstract¤ 

The study of spatial systems, such as urban systems, and Land-Use Science have 

been profoundly transformed in the last two decades by the emergence and spread of 

cellular automata (CA) models designed to simulate future land-use patterns from a 

bottom-up perspective. The fundamental elements in CA models are individual 

spatial units defined by their location, geometry, and attribute that evolve through 

time and over space according to the influence of their neighbors and some external 

factors. The aim of CA modeling is to capture this influence through a set of rules in 

order to generate meaningful patterns that represent possible paths the spatial system 

being simulated can take in the future. If well designed, CA models can inform on 

the processes that govern urban growth and land-use dynamics and can be used to 

explore future outcomes through the testing of alternative scenarios. However, to be 

useful, the architecture and implementation of these models, along with their 

assumptions must be stated in an explicit way in order to be understood and 

evaluated by the scientific and users’ communities. In addition, adequate techniques 

must be applied to verify to what extent the estimations of both quantity and location 

of change provided by CA models can be trusted. The objective of this paper is 

twofold: 1) to highlight some of the key assumptions in CA modeling, and 2) to 

describe the progress recently made in attempts to meet these assumptions. 

 
Assumption 1: The spatial units used in CA models adequately represent the 

meaningful geographical entities that compose the system being simulated. Recent 

advances: Moving from the arbitrary, fixed cell grid representation to an irregular, 

flexible e n t i t y -based r e p r e s e n t a t i o n  ( Bithell and Macmillan, 2007; Pinto 

and Antunes, 2010; Wang and Marceau, in prep.). 

Assumption 2: The neighborhood adequately corresponds to the zone of influence of 

each spatial unit composing the system being simulated. Recent advances: Moving 

from a rigid topologically-based neighborhood definition to a flexible semantic 
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definition adapted to each entity being represented (Moreno et al., 2009; Van Vliet 

et al., 2009). 

Assumption 3: The historical dataset used for the empirical calibration of CA models 

is of good quality, i.e. is free of errors and has been acquired at the right time and at 

the right spatial scale. Recent advances: It has been demonstrated that the quality of 

the datasets used for the CA calibration can greatly affect the simulation results 

(Pontius and Petrova, 2010; Pontius and Li, 2010; Van Dessel et al., 2011). 

Assumption 4: The transition rules built from historical datasets adequately capture 

the land-use dynamics; this involves an appropriate selection of driving factors 

(parameters), their values, and their combination. Recent advances: Numerous 

calibration techniques have been tested ranging from simple statistical and 

probabilistic methods to sophisticated computational intelligence techniques (Feng, 

et al. 2011; Feng and Liu, 2012). Systematic comparison of some methods is 

being done (Lin et al., 2011). Interactive and visual methods including some 

based on fuzzy logic that provide geographically-meaningful rules are being 

proposed (Hasbani et al., 2011; Stanilov and Batty, 2011; Liu, 2012; Mantelas et al., 

2012). Assumption 5: The trends in land-use dynamics and the factors driving these 

changes detected from historical datasets remain constant over time. Recent 

advances: Studies illustrated that such temporal stationarity is uncommon in many 

land-use systems and that this may affect the performance of CA models (Bakker 

and Veldkamp, 2011). 

Following this review and illustration, recommendations for future research in 

land- use CA modeling will be provided. 
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Abstract 

To support planners and policy makers in confronting the complexity of land use 

changes in Flanders, a dynamic, high-resolution land use model has been developed. 

It enables a better understanding of the main drivers and autonomous dynamics 

causing land use change and, as a prognostic instrument, it supports the design of 

planning instruments as well as the assessment of the potential effectiveness prior to 

the implementation. It allocates demands for space by the population, aggregated 

economic sectors, agriculture, and nature. 

The model is a constrained cellular automata land use model (White and Engelen, 

1993) consisting of linked sub-models representing spatial dynamics in Flanders at 

three geographical levels. At the Global level, Flanders and Brussels are represented 

as one entity subjected to exogenous influences and change. Trend lines determine 

growth in: population, employment in 10 aggregated economic sectors, land 

demand in 5 agricultural sectors and finally land demand for 11 natural land uses. 

These trends are obtained or computed external to the model as part of dedicated 

scenario exercises. At the Regional level, Flanders and Brussels are represented in 

terms of the 23 constituting arrondissements (EU-NUTS3 regions). A dynamic 

gravity-based model allocates and reallocates the populations and jobs, obtained 

from the global level, and computes the associated changes in population and 

employment densities. For each arrondissement, it passes on to the Local level the 

amounts of land needed to allocate the population and jobs per sector. Finally, at the 

Local level, Flanders and Brussels are represented as a regular grid of cells 

measuring 1 ha. Cells are in one of a maximum of 36 states representing their 

dominant land use. A cellular automata model determines the evolving land use of 

the individual cell based on the spatial interactions among the land uses within its 

immediate neighbourhood, constrained by institutional, physical and transportation 

characteristics. Apart from the changing land use, a series of custom-definable 

spatial indicators encapsulating economic, social and environmental qualities of the 

modelled spatial system are computed. Like the land use, these indicators are 

calculated on a yearly basis, thus resulting in time series of maps as well as 

aggregated synthetic index values. 

The model makes extensive use of statistical and GIS data. In the absence of a map 

of sufficient quality, a dedicated land use map was compiled based on a rich set of 

GIS data layers obtained from various data providers in the Flemish, Belgian and 
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Brussels administrations. It represents land uses in Flanders and Brussels in 2010 

classified in some 50 categories at a 10m resolution. The model has been 

extensively calibrated among others by means of hindcasting. It was further 

calibrated against the outcomes of the so-called PLANET model of the Federal 

Planning Bureau. Finally the morphogenetic capacity of the model and the spatial 

configurations generated are validated by applying Zipf’s rule on the rank-size 

distribution of urban clusters. 

During the past two years, the model has been used in several policy exercises 

requiring insights in land use developments as much as 40 years into the future. 

Impacts of current, intended or optional policies were assessed to raise new 

challenges for policy making and management in among others spatial planning, 

green energy production, flood prevention, and the estimation of ecosystems 

services provided by the Natura 2000 areas. New applications which are currently 

under development include dynamic coupling with feedback to a transportation 

model and a hydrological model in support of on the one hand mobility studies, and 

on the other, integrated river basin management. 

In the presentation, the structure and underlying principles of this constrained 

cellular automata land use model will be briefly discussed. Results of a scenario 

exercise carried out for the Ministry of Spatial Planning will be presented. Four 

contextual scenarios 2010-2050 similar to the worldviews of IPCC-SRES were 

developed and analysed with a view to provide input for the new Spatial Policy Plan 

Flanders (Beleidsplan Ruimte). 
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Abstract 

Urban cellular automata models were first developed as ways of operationalizing 

generative processes involving urban morphologies as, for example, in simulating 

fractal growth. In one sense, they have become part of the wider movement 

towards articulating cities as complex systems, and they tend to be part of the move 

from aggregate and static, cross-sectional models to those dealing with more 

disaggregate populations and dynamic behavioral processes. They currently tend to 

be associated with agent-based models for which they might be regarded as a 

special case but their comparative simplification and focus on the physical 

development of cities tends to have elevated them into a form that means that are 

being considered for use in prediction. In general however although there are 

many packages which have been fashioned to operationalize such models, their 

use in practice is patchy in that most urban agencies find them hard to use in that 

their predictive focus is highly physical and often non-numerical. In contrast to 

static, aggregative land use transportation models, their usage has been limited. 

In this paper, we will review the state of the art of urban in CA models. We will in 

particular examine the assumptions involved in their validation and verification, 

arguing that most such models do not articulate the processes that relate to land 

development that should strictly be part of the changes of state in development that 

such models seek to represent. We will argue that the starting point for most 

such models which is physical development and morphology is the wrong point of 

departure and it is the processes of change per se that should be the focus, difficult 

though this is. The key problem is that although processes of development drive 

physical CA models, there processes are rarely made explicit or if they are they are 

highly simplified. They are not validated in any sense for the calibration of such 

models is against spatial outcomes, not against the fact that such processes can 

be examined in practice. In short, processes are assumed but not tested for often 

data is simply absent. Hence calibration against model outcomes can often be 

spurious in that we know that models with multiple processes and many 
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interactions can generate similar patterns in many different ways. This is part of 

the problem of equifinality which means that the same patterns might be 

reproduced using very different processes. Currently unlike in the case of land 

use transport and spatial interaction models where there has been substantial 

research into the modifiable areal unit problem, there is no equivalent analysis or 

approach in the development of CA models. 

In the paper, we will catalogue these and many other problems, suggesting 

strategies for their resolution and suggesting changes in approach. We will list a 

series of issues with respect to their application and we will attempt to figure out 

what are the most appropriate conditions under which such models might be 

developed. This will involve not only scientific credibility but also practical 

applicability in the wider context of applications to policy making, prediction and 

planning support. In one sense, we take this paper as an updating of our earlier 

papers which have sought to review key problems in this filed [1, 2]. In this sense, 

we see this paper as a ‘progress report’. 

References: 
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Abstract 

A rapid urbanization process in a lake watershed is always accompanied by great 

land use/cover change and its subsequent effects on the local eco-environment. 

Therefore, urbanization process in a lake watershed should be controlled to avoid 

serious deterioration of ecological system. The urbanization process control usually 

is carried out through establishing appropriate urban land-use planning and policy. 

Scenario, as a link of uncertain future with given policies, is a popular method in 

policy planning and make-decision. In region or urban areas, scenario is always 

connected with Cellular Automata (CA)-based geosimulation system, which can 

produce multi-scenario forecast for the future. SLEUTH is one of the famous 

geosimulation systems which have been used for policy make-decision in many 

cities around the world. The purpose of this study is to explore the feasibility of 

SLEUTH in land-use policy decision-making in a large lake watershed – the Lake 

Dianchi watershed in Yunan-Guizhou Plateau of Southwest China.  

Lake Dianchi is located in the Yunnan-Guizhou Plateau of southwest China in the 

upriver area of Yangtze River. Lake Dianchi is the largest freshwater lake in the 

Yunnan-Guizhou plateau and is the sixth largest body of freshwater in China with a 

total area of approximately 300 km2 and a total watershed area of approximately 

2834 km2. Since China adopted the well-known “open-door” policy and economic 

reform in later 1970s, the near-shore area of the lake Dianchi has experienced rapid 

progress in industrialization and urbanization which has resulted in regional eco-

environmental degradation, loss of bio-diversity, extreme deterioration of water 

quality of Lake Dianchi, and so on. For example, water quality in Lake Dianchi is 

greatly polluted into serious eutrophication. Such degree of the deterioration of eco-

environment and water quality is a great threat to the ecological safety and 

sustainable socio-economic development of the southwest region of China.  

This study adopts a series of Landsat images, including Landsat Multispectral 

Scanner (MSS) images with a spatial resolution of 57 meters taken in January of 

1974, and Landsat Thematic Mapper (TM) images with a spatial resolution of 30 
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meters taken in January of 1988, April of 1998 and 2008. These images have been 

processed through geometric and radiometric correction. The Landsat MSS image 

of 1974 was resampled into 30 meters to maintain the consistency of the image’s 

resolution in the time series. Furthermore, a high-resolution image in 2008 covering 

the main urban area of Kunming city was collected as the reference of field work, 

real Region of Interest (ROI), and extraction of land use/cover pattern. 

Classification maps of the Dianchi watershed in 1974, 1988, 1998, and 2008 were 

produced to be used in system calibration for SLEUTH. Then, six land-use policy 

scenarios were established for land-use policy decision-making in the Lake Dianchi 

watershed: 1, to inherit past land-use policy without changes; 2, to use the least land 

for ecosystem protection; 3, to establish three ranks of urban development area for 

controlling urban sprawl; 4, to mix ecosystem protection and urban development 

control; 5, to control urban sprawl for agricultural land protection; 6, to promote 

urban develop through multi-centers. These six land-use scenarios were produced 

respectively from 2008 to 2028 for every year using the calibrated SLEUTH system. 

The produced scenarios for year 2013, 2018, 2023, and 2028 were assessed using 

landscape metrics and fractal dimension. The results show that the fourth scenario 

not only controls urban sprawl but also keeps appropriate urban morphology for the 

Lake Dianchi watershed. Other land-use scenarios also show themselves urban 

development characteristics. This study testifies the feasibility and advantage of 

CA-based geosimulation system for land-use policy decision-making in a lake 

watershed.  

 

* This work was supported by the National Natural Science Foundation of China 

(No. 40901090 and 41101152), the Talents Introduced into Universities Foundation 

of Guangdong Province of China, and the Scientific Research Foundation for the 
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Abstract¤ 

Cellular Automata (CA) have been intensively used in the last decades to simulate 

urban growth in cities. This is based on the fact that the suitability of a given 

location for built-up areas is highly dependent on the characteristics of the 

neighbouring locations, particularly on whether they are already urbanised or not. 

CA and Geographic Information Systems (GIS) have recently become an instrument 

for modelling the temporal dynamics of urban areas. Nevertheless, they have not yet 

been extensively used in Latin American cities. 

The prediction approaches for urban growth in cities are diverse. Some use 

probabilistic CA, while others define appropriate deterministic rules by hand, or use 

statistical tools to determine the CA transition rule, etc. Calibration parameters 

usually are the neighbouring radius, the random degree, or the influence of a given 

geographical feature. But up to our knowledge, the influence of the time scale, i.e., 

the number of years that a single CA iteration represents, has not yet been studied. 

Since accumulative effects of the CA dynamics are relevant in the CA theory, we 

think it important to explore the CA effect on urban growth models in different time 

scales. 

In the present work, we adopt the approach of Aguilera (2006), who runs a 

Geographical Logistic Regression to estimate the probability of a cell to become 

urbanised, and then it will urbanise only the most probable cells up to fill the real 

amount of surface growth. We repeat this methodology iteratively, in order to look 

at the CA effects. We apply it to predict the urban growth the Metropolitan Area of 

Concepción, Chile (MAC), from 2000 to 2009, and we compare the results. 

Description of the model 

                                                                 
¤
 This contribution has its references in an ‘Author-Date’ format. 



Maldonado et al., Cellular Automata Model for the Urban Growth 

310 | Proceedings of CAMUSS, Porto, Portugal, November 8 to 10, 2012 

As independent variables, we considered  

- x1: the density of the cell (people/m2). 

- x2: the altitude of the cell (m). 

- x3: the number of urbanised neighbouring cells in 2000. 

 

In a previous work by Rojas & Plata (2010), the selected geographical factors were 

distance to urban centres and roads, density and altitude; but a statistical analysis 

showed a strong correlation between the distance to urban centres and roads, and the 

number of urbanised neighbouring cells, which is an important variable for the CA 

models. The neighbourhood was chosen as the Moore's square neighbourhood, and 

the radius was determined by analyzing the error of the model for several different 

options, being 3 the most accurate. 

The data was obtained by: 

 

- Urbanised cells: by Landsat satellite images from 2000 and 2009. 

- Density: from 2002 census blocks data. 

- Altitude: from Digital Elevation Model (DEM). 

 

The dependent variable is the binary variable: urbanised or not between 2000 and 

2009. 

 

From this data we ran a Geographical Logistic Regression with the software Matlab 

in order to obtain a formula for the probability of a cell to be urbanised [3]. 

p(x1,x2,x3)=β0+ β1x1+ β2x2+ β3x3   (1) 

The software produced the following values (only 5 digits showed). 

 

β0=-1.6717 

β1=0.0002 

β2=-0.0146 

β3= 0.1248 

 

Then we computed the total number of urbanised cells in 2000 and 2009, n0 and nT, 

and consider a linear growth model for this quantity. 

 

nt= n0+ αt, for t varying from 0 to T. 

 

We repeated the following steps T times: 

 

1: compute the probability distribution through Eq.(1), 

2: choose the α most probable cells, 

3: add them to the urbanised cells, and 

4: compute, for each cell, the new number of neighbouring urbanised cells. 

 

We restricted the cellular space to the set of allowed cells. As a consequence, we 

discarded some urbanised cells belonging to a disallowed surface.  
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We applied the method in one, three and nine steps and we compared the results. 

The next figure illustrates our results.  

 

Figure 1. Comparison of actual and simulated urban area for three different values of T. Green 

colour represents the urban area which is correctly predicted; the urban surface which is not 
predicted appears in orange, and the blue colour is used for the wrongly predicted pixels. 

As quality measure we have used the rate of correctly predicted cells over the total 

urban growth (success rate), and the areal fractal (Barredo et al., 2003; Tannier & 

Pumain, 2005). These indices are showed in the following table. 

Table 1. Quality indices for the three experiments. 

 

The figure and the table show how the success rate increases with the number of 

iterations, while the shape of the predicted urban area has smoother boundaries than 

the real one. The fractal dimension confirms this remark. We can see that this value 

decreases with the number of iterations, moving away from the real fractal 

dimension of the MAC urban area, which gives 1.3273 in 2000 and 1.3489 in 2009. 

 

T=1  step                           T=3 steps                       T=9 steps        

 

T=1  step                           T=3 steps                       T=9 steps        

 

n 1 3 9 

Success rate 46% 50% 51% 

Fractal dimension 1.3116 1.2908 1.2769 
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From ocular inspection, we see some orange persistent areas, which could be 

explained by the influence of variables that we had not used. Specifically, the 

distance to roads could explain the orange areas because these new urbanisations are 

entirely related to the tentacular model of growth. Blue areas which are wrongly 

predicted in the simulation on one step disappear when more steps are considered, 

because the highest number of steps are used, the smaller is the growth at each step, 

thus maintaining the new simulated cells near the urbanized area. 

The use of a smaller time scale in the cellular automata model can reduce the error, 

but the present transition rule has a smoothening effect when applied iteratively. 

Maybe a similar study would give better result using other CA rules. 
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Abstract 

The problem of the modifiable areal unit (MAUP) is well known in geography and 

geostatistical analysis. The aggregation of the information in spatial units to build 

geographical models influences the final value assigned to these units. Raster 

models based on cellular automata are not free of this problem. In their application 

errors are introduced by aggregation the data and converting shape files into a 

regular grid. The choice for the grid approach, the selection of the cell size and the 

aggregation method used all influence the behaviour of the model and hence its 

simulation results.  

In fact researchers concerned about the impact on analysis results of variation in 

spatial scale in cellular automata models have started to measure it. The objective of 

this study is to assess how spatial scale affects a dynamical urban land change model 

based on cellular automata. An application was developed for the Madrid 

metropolitan region using the Metronamica software. From a detailed land use 

geodatabase (1:5000) land use maps of three time periods (2000, 2006 and 2009) 

were available. This data was used to set up applications with a cell size of 25 m., 50 

m., and 100 m., which were calibrated and validated, subsequently.  

Calibration was performed based on an analysis of historic data (for the period 2000-

2006) and expert judgement. Validation was performed over the period 2006-2009. 

In assessing the calibration and validation focus was given to the results as well as 

the shape of the interaction rules. To assess the results use was made of the Kappa 

Sim metric for the accuracy assessment of the locations and the Cluster - Size 

frequency distribution to assess the patterns of the urban clusters. To assess the 

shape of the interaction rules, we investigated the over and underrepresentation of 

land uses in the neighbourhood of locations that showed changes in land use 

between two periods. Comparing the measured over and underrepresentation against 

the simulated over and underrepresentation helps to fine-tune the interaction rules 

and assess the modelled process by looking at the agreement between both analyses. 

As part of the sensitivity analysis to test the impact of the selected scale, the 

following steps were conducted: 

1. Calibration of the application at 50 m.  
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2. Application of the neighbourhood rules obtained during the calibration 

under 1 to the applications using 25 and 100 m. resolutions and assessing 

the results. 

3. Fine-tuning the calibration of the application at 25 m.  

4. Application of the neighbourhood rules obtained during the calibration 

under 3 to the applications using 50 and 100 m. resolutions and assessing 

the results. 

5. Fine-tuning the calibration of the application at 100m.  

6. Application of the neighbourhood rules obtained during the calibration 

under 5 to the applications using 25 and 50 m. resolutions and assessing 

the results. 

 

This analysis provides us with two types of information. Firstly we can evaluate at 

what resolution an application for Madrid obtains the best calibration and validation 

results (using information from steps 1, 3 and 5). Secondly we can evaluate the 

sensitivity of a rule set calibrated for a specific resolution to a different resolution. 

The presentation will focus on the process and the results of this study. 
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Abstract 

We present a residential choice simulation for localizing existing (P0) and future 

(P1) household agents within the Grand Duchy of Luxembourg. MOEBIUS 

(MObilities, Environment, Behaviour integrated in Urban Simulation), a multi-
institution project, aims to simulate Luxembourg’s future (2025 / T1) urban 

development across multiple policy driven scenarios. This presentation focuses on 
distributing existing populations (P0 at T0) and locating future growth (P1 at T1). 

Luxembourg is experiencing rapid growth, high housing prices, large numbers of 

daily cross-border commuters and extensive road congestion. Recent urban growth 

has intensively consumed arable land in locations that road infrastructure is 

struggling to support. In this context our research partners upstream are 

providing spatial and synthetic population data for our work in determining urban 

population distributions, which we provide to our downstream partner to model 

potential future commuting and congestion patterns. This analysis flow is applied 

to integrated (sustainable) development, business as usual and pro-growth scenarios 

(S1-3). 

Localization of P0 agents at T0 is dependent on spatial attributes determined 

through a cellular automata (CA) kind framework and network distance 

accessibility. A synthetic population [1] containing 170,000 active (employed) 

agents within 110,000 households provides the data from which to determine agent 

location preferences. Households and individuals are allocated using an economic 
residential choice agent-based model, inspired from Caruso et al. [2] and adapted to 

heterogeneous households and finite population sets. This process is replicated at T1 

with population growth, P1, across multiple scenarios, S1-3, using more complex 

methodologies. 

Agent placement is dependent on four factors: Spatial attributes, network 

accessibility, agent preferences and the remaining agents in the synthetic 

population. 
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Spatial attributes (e.g., green space, urban and population density) are calculated 

using neighbourhood functions. Accessibility is based on road network distance to 

services and work destinations. The economic residential choice model allows 

agents, based on their preferences, to weigh tradeoffs, such as distance to 

work, urban density and proximity to green spaces, in terms of utility in order to 

bid. The residential model uses a market clearing method adapted from Fujita [3], 

applied recursively across households groups, in order to generate agent locations, 

rents, and utility levels. 
The implantation of future urban growth agents brings new challenges. Areas 

available for growth of various densities have been processed into empty 

residences arranged in an irregular spatial structure. The residences are then filled 
on demand by agents. We created the new residences using a recursive CA space 
filling algorithm. While initial population, P0, are specified at communal scale, P1 

forecasts are national. In order to provide a balanced future population distribution 

we performed regressions on urban indicators that impact residential price and 
extracted communal residuals for the predictive model. We have also implanted a 
congestion model provided by our downstream partner based on our T0 output to 

improve accessibility attributes. Although these new factors created new attributes 
and considerations for agent preferences, the economic model and market clearing 
mechanism remained the same. The final synthetic population allocation for each 

scenario shows spatial variations in rent and utility as well as differences in socio- 
economic class well-being. 

This document is a template with the rules that must be considered for submitting a 

short paper to CAMUSS. The short papers will be peer-reviewed by the Scientific 

Committee of the Symposium. Authors of a selection of short papers will be invited 

to submit full papers that will go through a peer-review process and will be 

published in the associated journals. Short papers must follow the rules described to 

guarantee a high quality of the book of proceedings. Each short paper must not 

exceed 4000 words due to editorial reasons, including title, authors and their 

affiliations, and references. Page size must be A5 with the following margins: 2 cm 

on top, bottom, left and right. Title must be in Times New Roman bold, 14pt, 

centered. Authors must be listed with their names in Times New Roman bold, 10pt, 

and remaining information in Times New Roman, 8pt. The correspondent author 

must be clearly identified. Figures, maps, and tables should be kept to a minimum 

and identified in the document with proper caption and must be referenced in the 

body of the text. The maximum number of keywords is 5, written in Times New 

Roman, 9pt, left aligned. 

The organizers will refuse short papers if they do not comply with this template.  
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Abstract 

An important issue in CA modeling is the impact of neighborhood structure on 

automaton dynamics. The Schelling’s spatial proximity segregation model [1], [2] 

can be used to analyze this influence. 

Schelling illustrated the emergence of a highly organized phenomenon, segregation, 

from the combination of individual behaviors based on a demand of similar 

neighbors. By varying neighborhood size, Schelling explained that the tendency to 

segregate is more attenuated in largest neighborhoods than in smallest one’s, 

because satisfactory patterns are more easily found. Laurie & Jaggi [3] showed that 

this is true at intermediate levels of individuals demand. On higher levels of demand, 

an increase of the neighborhood size produces an increase in non-satisfied 

individuals, so the model stabilizes later and the final pattern is more segregated. 

More recently, graph-based (or reticular automata) has been used to include non- 

regular neighborhoods in automata. In these models the regular lattice of cells is 

replaced by a graph describing the complexity of proximity relationships in urban 

environments [4], [5], [6], [7]. This relaxation of cellular automaton definition 

permits to integrate the anisotropy of urban space due to the spatial configuration of 

buildings and the transportation networks in local-scale studies. 

SMArtSegreg model [8] was implemented to test the Schelling model in different 

theoretical graphs. Simulation results reveal that presence of cliques attractors in 

networks. Hierarchical networks, like scale-free or fractal networks are more likely 

to allow segregative structures at low-levels of individuals demand than regular or 

random graphs. 

Remus model [6], [7], permits to include real urban patterns and road accessibility in 

a graph-based cellular automaton. The model replaces cells by buildings polygons in 

the cellular automata and it creates neighborhood graphs, based on road network 

accessibility between buildings, that are used to define their neighborhoods. 

Simulations on real urban patterns show that dense areas reach stable configurations 

later than sparse one’s, confirming Schelling’s and Laurie and Jaggi’s hypothesis. 

But results show also that urban structure seems to have a strong influence on the 

spatial distribution of population clustering. The main crossroads, corresponding to 

the best-connected nodes in urban graph, represent attractors for clustering: 

buildings in the crossroads proximity are more connected, and aggregate in larger 
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clusters. Segregation dynamics are controlled by poorly connected zones separating 

well-connected ones. 

This two models reveal the fact that segregation dynamics depends on the size of 

neighborhoods, but also in the spatial distribution of neighborhood sizes. This 

conclusion can be used by urban planners to conceive less segregative urban 

patterns. Reticular automata are useful tools to improve comprehension of 

phenomena constrained by proximity effects, like intra-urban processes. 
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Abstract  

The ambiguity of the spatial entitation is a fundamental issue in cellular automata 

models (CA). However, theoretical approaches to the issue are quite rare. This paper 

presents a new approach to local interaction in cellular automata models that links 

the theories of gravitation, accessibility, fractality and space syntax. In classical 

cellular automata (CA), spatial relations are defined through neighbourhood 

definitions, which determine the spatial structure of the CA system. In applied CA, 

strict definitions of neighbourhood in “pure” CA are often relaxed, but no 

extensive/uniform theoretical formulation has been presented on the means of 

relaxations. Typical relaxations include statistical rules used in larger 

neighbourhoods and macro-level spatial constraints, which are based on econometric 

models. This paper discusses how these different methodologies defining spatial 

relations can be applied to the interaction in cellular spaces. We suggest that a 

generic framework of spatial separation can be formulated by exploiting well- 

established spatial theories in order to strengthen the theoretical basis of implicit 

assumptions in the neighbourhood definitions of CA models. 

By definition, local interaction creates another theoretically challenging issue; 

namely, the scalarity of the spatial interaction, how the interactions of different 

scales can be included in one model, and exactly how “local” the local activity really 

is. The fractal nature of urban networks can be a key to the interaction between the 

spatial networks of different scale levels. Certain spatial entities intuitively seem 

very “natural” from the CA model perspective (such as houses, lots or blocks), but 

the question remains as to whether they are suitable objects for describing the 

interactions of all levels. The ontological ambiguity becomes more obvious when we 

observe any model that manipulates larger region-based information. While the 

geometrical definition of a region is trivial, its corresponding geographical 

counterpart is far from that. Regions are formed on the basis of similarity of 

observed phenomenon, but the similarity-norm to create crisp entities does not 

automatically fit with the aggregation. 
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In terms of spatial separation, the long tradition of gravitation models defines the 

distance decay between the spatial entities. The gravity measure takes into account 

population or other attractive features of urban environment. There is a clear need to 

identify more sophisticated methods of forming the spatial representation other than 

abstract tessellation, such as rectangular or hexagonal grid, in order to achieve more 

sensitive results of the simulation. The paper discusses the extension potential 

towards a few classic theories that are all implicitly attached to neighbourhood and 

scale. 

The best known examples of the spatial relativity phenomenon are gravitation 

models and their derivatives, which are more generally known as Spatial Interaction 

Models. The key idea and importance to geography of these models are expressed in 

the so-called Tobler’s law, which states: “I invoke the first law of geography: 

Everything is related to everything else, but near things are more related than distant 

things”[1]. The same principle is behind concepts such as the attractiveness of the 

space, the friction of space or distance decay. Joutsiniemi [2] recently observed this 

principle in a crisp, street segment-based network model. Joutsiniemi also showed 

that the configurational approach of the so-called “space syntax school” [3] has 

similarities with gravitation models and how this can be interpreted as generic 

spatial accessibility. 

The current paper presents an experimental sample model that uses the cellular 

space derived from a disaggregated transportation network instead of grid 

tessellation. The interaction in the model is based on the dynamically changing 

neighbourhood definitions. The disaggregated data and relaxed neighbourhood 

definitions enable the use of CA framework in a more concrete way and more 

realistic interaction rules. The restrictions set by the computational capacity to use 

more and more disaggregated data are gradually dying out. They are being replaced 

by an expanding variety of different parameter combinations that cannot be tested, 

not because of the capacity itself but because of the capacity of the model user to 

handle the variety of simulation results. This heightens the importance of the 

selection of parameter combinations. 
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Abstract 

During the past century, spatially explicit urban growth models (UGM) have 

evolved from regional economic models, Markov-Chain driven probability matrices 

to machine learning driven cellular automata (CA) based models. Machine learning 

driven CA-based UGMs use supervised learning algorithm to optimize land use 

transition rules using regression techniques on historic geographic data. Although 

this method has achieved significant improvements during validation, the applied 

machine learning algorithms are often specifically designed to operate within the 

domain of urban simulations. Many UGMs that incorporate neural networks, support 

vector machines or genetic algorithms to ‘learn’ underlying rules of geographic 

pattern formation are ‘off-the-shelve’ products that are not especially optimized to 

deal with the specific constrains posed by within an UGM context. One of the major 

problems is the large number of candidate solutions provided by the algorithms 

needed for optimization. This is often due to the fact that many machine learning 

algorithms excel at exploration (searching through the search space) but show 

limited effectiveness in exploitation (finding local optima). For instance, to reach a 

satisfactory level of accuracy, a standard genetic algorithm requires an extensive 

population of differently parameterized UGMs in combination with a large number 

of iterations. Since, CA based UGMs for large metropolitan areas often consist of 

10s of millions of individual cells, the validation sequence for an individual growth 

model that defines the model’s fitness (e.g. kappa coefficient based similarity 

indices) is computationally expensive. This often limits the systematic development 

UGMs. 

In search of higher levels of accuracy, in the past years CA based UGMs have been 

extended by agent-based models that mimic urban metabolic flows as well 

behavioural aspects of urban dwellers (e.g. traffic models). Although this might 
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seem intuitive, this also increases the model’s complexity, the subsequent control 

and manageability. Yet, CA based models often do not exploit implicit patterns, 

rules and potential correlations that can be found within the geographic data used to 

drive CA based models. While it is fairly common to incorporate static morphologic 

data (e.g. elevation, slope), infrastructure related data (e.g. proximity to main roads) 

as well as other explicit urban drivers for growth, the use of ‘hidden structures’ like 

for the distribution of urban cluster locations are often limited. Yet, these ‘hidden 

patterns’ might provide additional information that improves the accuracy of the 

UGMs. 

For this study we developed a so called memetic algorithm; a combination of a 

standard genetic algorithm and a local search ‘hill climbing’ function. While the 

genetic algorithm is used for the exploration of the search space using common 

techniques like arithmetic recombination and mutation, the ‘hill climbing’ algorithm 

searches for local optima by improving the candidate solutions (i.e. exploitation). In 

practice, this means that all candidate UGMs are optimized to provide the ‘best’ 

solution within a local search space. The model has been developed using the 

Dinamica-Ego platform for dynamic GIS and has been applied to greater Beijing, 

CN. Dinamica-EGO provides a Bayesian probability based ‘weight-of-evidence’ 

methodology to regress land cover transition rules. The model provides two 

constrained CA-based cell transitional modules: the ‘expander’ and ‘patcher’. While 

the expander develops land patches from existing land cover classes (i.e. mimicking 

urban extension) the ‘patcher’ initiates disconnected land cover transitions (i.e. 

leapfrogging development). The modulation of growth rates for the two modules is 

controlled by a third module. All three modules require substantial parameterization. 

The optimization of the parameters is controlled by the mimetic algorithm. Apart 

from a set of common thematic layers (e.g. slope, proximity to infrastructure), the 

model uses a set of dynamically generated layers; during each iteration, a urban 

cluster analysis is performed that is used as input for the next iteration. An additional 

problem encountered during model development was caused by the independency of 

transition rules. While the model uses three land cover classes to identify urban 

areas (i.e. low, medium and high density built-up areas) the transitions to and 

between these classes were treated independently. Although high levels of accuracy 

were achieved during the validation stage, future projections showed extensive 

urban sprawl that did not comply with intuition or perceived growth trends. To 

overcome this problem, the model has been divided into 2 stages. During the first 

stage a so-called ‘urban envelope’ is calculated for prospective years. In the second 

stage the model diversifies the urban development into the three urban classes using 

the envelope as a growth extent.  

The outcomes of this approach show significant improvement over the existing 

baseline model; the combination of using a memetic algorithm and the information 

provided by dynamic maps further increases the accuracy during UGM validation. 

The 2-stage approach on the other hand produces consistent growth scenarios for 

future years.  
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Introduction 

Over the past 30 years, a substantial body of scientific work has been developed in 

spatially explicit urban growth modelling. Using historical land use and land cover 

data as validation, the current-state-of-the-art in urban growth modelling uses 

sophisticated machine learning algorithms to ‘learn’ site-specific urbanization 

patterns in order to develop scenarios for future urban development. Although the 

accuracy of these models has reached a high standard, actual application of these 

models in strategic urban growth policies, urban containment and/or urban zoning 

and master plans is still limited. One could argue that urban growth models are 

facing a challenge in legitimacy; model outcomes are often treated with suspicion by 

city planners and other institutions involved in the urban planning. This is to some 

extent due to the inherent uncertainty associated to the development of drivers (e.g. 

local GDP growth, population changes) as well as constrains (e.g. top-down 

planning policies). Since the majority of urban growth models focus on the 

extrapolation of historic urban growth patterns into the future one could argue that 

model outcomes can be considered as Business-As-Usual (BAU) scenarios in the 

urban development domain. 

During the past decades, the impact of natural hazards (e.g. flooding, drought, heat 

stress) on metropolitan areas exceeded all expectations. Climate change is likely to 

further exacerbate the frequency and intensity of natural hazards and their 

consequences. In natural hazards research, BAU scenarios are generally used to 

identify a long-term baseline from which the effects of climate change scenarios as 

well mitigation and adaptation policies are quantified. Within this domain, there is 

an increased awareness that the majority of natural hazard impacts are linked to 

urban growth and (the lack of) long term urban planning policies. Urban growth 

increases the exposure (e.g. increased concentration of people and assets located in 

flood prone areas) and sensitivity (e.g. slumification) of urban areas to natural 
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hazard impacts but also acts as a driver (e.g. increased surface runoff and 

precipitation).  

To assess the impact of urban development, there is an increased demand for urban 

growth modelling in both the natural hazard research community and the 

environment agencies of local, regional and national governments. Within the fields 

of flood management, water resource management, heat impact assessment as well 

as urban climate mitigation and adaptation, insights into long term urban 

development are vital to develop robust ‘climate-proof’ urban policies. Since many 

stakeholders within these domains are familiar with uncertainty management, the 

intrinsic uncertainties within the domain of urban growth modelling are not 

necessarily treated with suspicion. On the contrary, the outcomes of urban growth 

modelling are embraced and treated as they should: as potential development 

scenarios instead of predictions. In that respect they are used as discussion support 

platform to better assess the consequences of long term strategies and ‘what-if’-

scenarios. 

In this paper we will present three domains in which future natural hazard impact 

assessment and urban growth modelling are combined. The first project covers the 

impacts of urban growth on flooding in expanding megacities: Beijing, CN, Dhaka, 

BD and Mumbai, IN. For all three cities, constrained urban growth models have 

been developed that cover a mid-term horizon (2060). The urban growth models are 

connected to hydraulic and flood impact assessment models to identify future flood 

prone areas and changes in the subsequent impacts. Depending on the outcomes, 

alternative ‘water-sensitive’ long term urban development plans are developed that 

safeguard these cities against future flooding. The second project focuses the 

interaction between urban growth and changes in local precipitation for large 

metropolitan areas. Recent meteorological research shows that local changes in 

(monsoon driven) precipitation are strongly related to the intensity and extent of the 

urban heat island effect that most metropolitan areas suffer from. The study showed 

increasing extreme rainfall events as a consequence of urban growth for the city of 

Mumbai, IN, for a horizon of 50 years. Since Mumbai is already suffering from 

severe urban flooding, this evidence urges for a controlled urban development 

(currently 60% of Mumbai’s population lives in slums) to at least maintain flood 

hazards at the current level. The last project evaluates the effects of future urban 

growth on the water quality and pollution loads in Lagos, NG. As the fastest 

growing megacity in Africa, Lagos is severely suffering from poor sanitary 

conditions that cause increasing stress on streams and rivers. Since more than half of 

the population lives in slums, the subsequent pollution loads significantly impact the 

local water quality and ecosystem. Due to urban growth, this trend will also expand 

to streams currently used as grey and black water drains. Since the surface water in 

Lagos is used extensively by the local population, the consequences of urban growth 

and the lack of good sanitation facilities might lead to immense strain on local 

resources and inhabitants and render the problems to an unmanageable scale. 
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Abstract 

The man-made processes, boosted by the increasingly worldwide need of food, 

fiber, water and shelter, rule the changes of use and land cover [1]. The deforestation 

causes the loss of biodiversity and causes possible weather impacts [2]. With the 

valuation of natural resources, know its allocation in both spatial location and time 

and know how they interact in space is fundamental to create aid mechanisms to 

decision taking as well as planning future development [3]. 

The spatial modeling simulation help understand the causing mechanisms and 

development processes of environmental systems [4]. The spatial modeling 

simulation based on Cellular Automata (CA) have been used for assessing complex 

environmental issues, such as estimate pathways and impacts related to the 

greenhouse gases emissions [5], [6], integrated modeling of population, employment 

and land-use change [7], land-use change [8], predict possible trends in deforested 

areas, pastures and forests [9], among others [10]. 

This study proposes the development, calibration and outcomes analysis of a 

dynamic spatial modeling simulation Land Use, Land Use Change (LULUC), taking 

into consideration a time period, 1986, 2000 and 2008 (t1, t2 and t3, respectively) 

where t3 is used to assess quality of the simulated map from t2. Work is focused on 

reduction rate of the forest remaining of Atlantic Rainforest of the Brazilian 

Municipality of Maragogipe located at 82 miles east of the State Capital Salvador in 

the State of Bahia. For so, a modeling platform was used (freeware) based on (CA) 

DINAMICA-EGO (http://www.csr.ufmg.br/dinamica). 

Medium and high resolution satellite images were researched and purchased 

(Landsat-TM and CBERS-2B, sensor CCD; HRC) and other cartographical bases 

correlated to the study area. Information was cataloged according to its source, 

homogenized, and defining the work unit: degrees, cartographic and geodetic 

references, by performing conversions and geo-referencing if applicable. Satellite 

images were processed to equalization histogram and radiometric. They were 

classified by using the supervised method and the Bhattacharya algorithm. The 
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following classes were identified: rainforest, mangrove, grassland, regrow, urban 

areas and others. The thematic precision was assessed with the aid of 300 points 

acquired in technical visit and by high resolution images analyses, in both cases 

defined at random. The descriptive statistics of global accuracy reached the 89% 

ratio and the Kappa inter-rater agreement: 0.864 number that represents a high 

acceptance level according to scale suggested by Congalton and Green [3]. The 

classes were grouped in rainforest and non-rainforest. 

Basically, the model was structured in the software, based on a simulation model 

suggested by Soares-Filho et al. [12]. An initial map (t2) has its classes changed 

according to change rate “Transition Matrix” (TM). TM is the total amount of 

change for each land cover transition type of the maps classified, taking into account 

the time period of the simulation through a cross-tab operation. Such changes 

happen in the most likely areas, defined by the likelihood map, resulting from the 

calculus of Weights of Evidence (WofE). WofE are the local odds of a transition 

land use classes taking into account a range of spatial variables by stochastic 

methods, Bayesian statistical or conditional probability. The spatial variables were: 

altitude, slope, soil conditions, conservation areas, distance to major rivers, distance 

to small rivers, distance to urban patches, distance to roads, distance to 

deforestation, and distance to protected areas. In this study, analyzed transition was 

transformation of forest in deforested areas (deforestation). Stains of change 

(landscape disturbance) happened in quantity in accordance with TM and had their 

rate of appearance or aggregation according to the values arbitrated to certain 

software function operators, as well as the isometrics of stains. Applied to changes, 

the resulting landscape map was saved at every step of the model and retro-fed as 

initial map in the next step until reaching a compatible time variation with t3, by 

making possible the validation of outcomes. Validation was performed by 

calculating the similarity between the simulated map and the real map (t3) based on 

fuzzy logic, applied to a context of pixel vicinity, by means of an exponential decay 

function with an 11-pixel-window. 

By visual analysis (Figure 1), it was noted that the heuristic process was successfully 

designed, as the deforestation standard was respected and are congruent with the 

local probabilities according to the likelihood map. The similarity reached by 

comparison between the model outcome and the real map (t3) was 46% of minimal 

similarity and 77% of maximal similarity. 
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Figure 1: Results of the simulation: a) 2008 observed, b) 2008 simulated. 

The outcomes reached in this paper show that the spatial model implemented and the 

software utilization, which use the methodology based on CA is a good tool for the 

analyzes of environmental complex systems and have robust potential to generate 

predictive or previous analyses within the ambit of LULUC studies, and the 

reliability level may also be assessed. 

We thank Instituto Perene (“Perene Institute”) for granting the data used for this 

study. 
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Abstract 

Our reflections and the numerous works concerning the city, its planning and its 

transformations, showed all its complexity. The overall process of spatial 

development of the city system results from the interaction of social, political and 

economic factors, some being activators of its development and others inhibitors. In 

front of such a complexity and such a profusion of factors, it is difficult to produce a 

rigorous explanatory theory. Hence, in a parsimony perspective, we make the central 

hypothesis, that comes true rather widely through the simulations, that the great 

majority of the factors which pilot urban development are linked to processes that 

have spatial designs which reveal them. More exactly, urban processes (as sub-

urbanization, large housing estates construction, business park development, etc,) 

are appearing from specific spatial configurations but are also producing 

characteristic spatial patterns. 

Rather than producing a fine spatial analysis which tries to isolate the contributory 

factors, that is almost impossible because of their intricacy, we adopted a 

constructive approach by developing SpaCelle. This cellular automata platform 

obliges the modeller to a certain conceptual parsimony. It was developed on urban 

growth issues; nevertheless, it remains very general and can be used in other 

research fields concerned by spatial dynamics. SpaCelle is based on a classical 

cellular automata paradigm which means that each cell is only reactive. Indeed, 

contrarily to a more general agent based model, at each iteration a cell cannot do 

anything other than change its internal state from its previous state and that of its 

neighbours. Therefore, no flow can be modelled. This means that we can’t modelize 

interactions since it requires a simultaneous exchange between two or more cells. In 

addition, the use of the platform requires no computer skills: a one click installation, 

graphical interface, no algorithmic programming. The dynamic model is defined by 

a list (unordered) of transition rules close to the natural language which permits to 

test explicit hypotheses of evolution of land use. The user must first build an initial 

spatial configuration by importing the different layers containing geographical data 

(grid for the land use or the topography, vector layer for networks, etc.). Then he has 

to build the base of knowledge of the cellular automata which defines the different 

states in each cellular layer and the dynamics of the model using two kind of 
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transition rules: environmental rules and life rules. These rules reflect the spatial 

aspects of processes in action. They are at every moment and in every place in 

competition with each other. It can thus handle the complexity of influences and 

constraints, often antagonistic that are overlapping in space. An important feature of 

this type of modelling comes from the verbal aspect of the formulation of the 

dynamic model, which provides by construction, an explanatory aspect by induction. 

Indeed most of the urban growth models are based either on deterministic dynamics 

that adjusts series of evolution curves or action curves according to the distance (as a 

potential), or on stochastic laws as Markov chains, methods that are not directly 

explanatory. 

The cellular automata SpaCelle helped to enlarge and further improve our reflection 

on the city construction. The modelisation was applied to the Rouen area. The 

reflection was carried out from two directions. 

The first, based on a retro-simulation approach, led to a model that improved the 

general understanding of urban dynamics during the second half of the twentieth 

century. We identified some ten processes, more or less old, that have animated 

urban spaces since the Second World War. It was validated using different methods. 

The second, based on a prospective approach, aims at assist management of urban 

areas. It compares the simulations of different scenarios proposed by policy makers 

and local planners for 2025. Prospective scenarios were realized using the retro-

simulation model, on which alternatives scenarios were constructed. The results of 

these scenarios were discussed with city planners who could appreciate visually 

some possible effects of the different political orientations. 

Finally, the platform SpaCelle is not limited to the urban growth issues; it permits to 

simulate a wide variety of situations from the game of life to the spatial spread of 

epidemics, through ecological or climatic models. 
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Abstract 

Literature reviews are key components for understanding the scientific progress of a 

research subject. They tend to be organized on a chronological way, but the large 

majority of them, if not all, focus on the features and details of the subjects, 

regardless of their chronological evolution. These perspectives may lose some 

important issues that had contributed for this evolution, in particular those regarding 

the technological and socioeconomic contexts, in which the subject was considered 

as valid and pertinent both for research and for practical application. This is 

increasingly more important when we are dealing with models of any sort. Models 

are intended to be controlled, affordable, understandable, and safe test beds for 

experimental research about more complex systems. For this reason, there is a very 

close connection between the needs and the context of societies and technology and 

the research made using models, a discussion somehow present in the famous papers 

of Douglass Lee [1, 2] and, more recently, in Helen Couclelis thoughts about the use 

of integrated models [3]. This presentation focus on an historical timeline for the 

research and application of cellular automata (CA) models in urban studies and 

geography, from their formulation by von Neumann and Ulam and the pioneer work 

of Tobler, to today’s complex models that integrate a whole set of other modeling 

concepts in their formulation. We will relate CA models with the technological 

settings and with the planning practices that were the main trends at each moment 

during their already long existence, identifying how these tensions influenced the 

research on CA. 
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Abstract 

Over the past decade various authors have discussed to what extent the 

neighbourhood rules (also known as interaction rules) of CA-based land use change 

models are generic. Where some argue that local differences in behaviour are crucial 

for the accurate modelling of land use processes and need to be included in the 

neighbourhood rules, others advocate that their nature is more generic.  

This research aims to investigate to what extent it is feasible to calibrate a CA-based 

land use model for Europe with one set of interaction rules and if a sub-division in 

large regions enhances the calibration results. The research is carried out with the 

Metronamica model that has been widely applied to cities, regions and countries 

worldwide (www.metronamica.nl). Main data sources used are Corine Land Cover 

maps, GISCO transport data, zoning information provided by EC DG Environment 

and the EC DG JRC and information on the bio-physical characteristics of the 

territory provided by EC DG JRC. 

The research consisted of the following steps: 

1. Analysis of historic land use changes in Europe to understand:  

a. how land use patterns have evolved over time.  

b. what land uses are over- or under-represented in the neighbourhood of 

cells that have changed over time, and why.  

 

2. Calibration of the model to the whole of Europe as well as to the large 

regions in Europe, each time using the same underlying data and resolution 

(1x1 km2). Calibration results are assessed for both the process and 

predictive accuracy and compared against a benchmark. 

 

3. Comparison of the various calibration results to assess if it is possible to 

calibrate an application to Europe with one rule set, and if the calibration 

results will improve by sub-dividing Europe into large regions with similar 

behaviour and region-specific calibration parameters.  

Analysis of land use change shows that both similarities and differences in land use 

change dynamics can be found across Europe. The continuation of the urbanization 

process and the development towards larger urban centres can be detected all over 

Europe. The exception to this is Western Europe, where the data shows that the 
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distribution of urban clusters remains largely constant over the analysis period. This 

may be because this area was already highly urbanized from the initial year of the 

analysis, compared to the rest of Europe and hence a development towards larger 

clusters is likely to have taken place before the analysis period. All over Europe 

urban sprawl can mainly be found in areas formerly occupied by agriculture, causing 

agricultural areas close to cities to be taken over by suburbanization. Differences are 

found in the way residential development is attracted by water bodies. Inland water 

bodies are important attractors for residential development in South-eastern Europe 

and Western Europe, while the coast is a main attractor for this development in the 

Mediterranean and Western Europe. Part of this behaviour can be explained by the 

desire of people to live near water bodies, but historical preference of cities to locate 

next to coasts or rivers for their transportation function are likely to contribute to 

these developments as well. The latter would indicate that including this behaviour 

in interaction rules should be done with caution, as the reason for current 

developments might be the proximity to the cities rather than to the water body. 

Agriculture is the land use that shows the largest decline in surface area in the 

European territory. Strongest decreases are found in Western Europe, followed by 

the Mediterranean region. Conversion from agriculture to all other land uses can be 

detected throughout Europe, while new agricultural locations can mainly be found 

on land previously occupied by forest and natural vegetation. Contrary to what neo-

classical economists expect as a result of transport costs to a central market, the data 

does not provide any indication of an attraction of agriculture to urban land uses.  

Calibration results show that it is possible to calibrate a CA based land use model for 

Europe to the extent that it is able to outperform the chosen benchmark. However 

calibration results can be improved if the calibration rules are fine-tuned using the 

specific characteristics and behaviour observed in the large regions.  

This research shows that neighbourhood rules for Europe are to a large extent 

similar, but that including information on regional characteristics regarding the 

behaviour enhances the calibration results. 
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Abstract 

Urban modeling is inherently an interdisciplinary endeavor, with a broad societal 

relevance. It is not surprising that it brings together researchers from a wide range of 

backgrounds, carrying with them the paradigms, toolsets and terminology of their 

disciplines. These backgrounds include economists and econometricians, 

geographers, planners and architects, civil engineers, computer scientists and many 

more. This paper makes a systematic comparison between three models that are all 

concerned with the organization of land use and activities in space and that all see 

proximity and accessibility as major determinants of that organization. Despite these 

strong conceptual similarities, the models are conceived from fundamentally 

different starting points and assumptions, and it is often thought that there are 

irreconcilable differences.  

The compared models are the MOLAND Cellular Automata model as introduced by 

White and Engelen [3]; the dynamic spatial interaction model UrbanSim [2]; and the 

MEPLAN regional economic land use and transport model as proposed by 

Echenique [1]. These models differ in their basic units: parcels of land in the cellular 

automata model and households and organizations in MEPLAN and UrbanSim. 

They also differ in their understanding of the predictability and regularity of the 

urban growth process: Central to the MOLAND model is the notion of complexity 

and self-organization, UrbanSim on the other hand assumes that rates of change 

follow continuous functions that may well be estimated using standard econometric 

techniques, and MEPLAN is based on a constant equilibrium in the demand and 

supply for land.  

This paper compares the strengths and weaknesses of these models; it also shows 

how the models make concessions to their basic structure in order to overcome 

weaknesses. It then emerges that in practice the models are more similar than their 

theoretical roots suggest and the remaining differences are to a lesser extent 

fundamental conceptual differences, but rather differences in emphasis, terminology 

and computational methods. 

The comparison of the models’ strengths and weaknesses gives rise to the idea of a 

best-of-worlds hybrid solution. The paper concludes by setting out the basic 
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components of such a solution and presenting a number of suggestions to make it 

work computationally.  
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Abstract 

Cellular Automata (CA) models are very popular models for simulating spatial 

change and they have been developed and applied intensively during the past two 

decades. Two main features made CA interesting for urban studies: first, their 

inherent spatiality which suits the simulation of a wide range of geographic 

phenomena; second, the possibility of simulating complex patterns of, for example, 

land use starting from a simple conceptual framework that includes the definition of 

a cell space (form), a neighborhood (interaction), and a finite set of transition rules 

(behaviors) applied to a finite set of cell states (land uses). This conjugation of form 

and function make CA models suitable for capturing the contribution of different 

phenomena to the complex processes of urban change. These models are commonly 

used to simulate land use change at a regional or metropolitan level considering land 

use dynamics at a local level. They consider increasingly smaller cells, making use 

of the high resolution of today’s remote sense images to capture many interactions 

that occur at a very large scale. Regular cells are used at the local scale (pixels) and 

at a regional scale, as aggregations of smaller cells. This regularity does not match 

reality at both scales. We address these issues of scale and cell form by proposing a 

multiscale CA modeling platform that aims to capture land use dynamics at two 

different spatial and time scales: a macroscale CA that tries to simulate the 

aggregated land use change at a regional level; and a microscale CA that tries to 

simulate land use allocation at local scale. We use irregular cells at both scales – 

municipalities or similar units at the macrsocale and census blocks or derivatives at 

the microscale – as irregular cells to simulate land use change. The macroscale 

model generates aggregate values of land use demand as an input for the microscale 

model which will then try to allocate land use to best fit simulation to reality. We 

describe the main features of the models and of the calibration process. Finally, we 

present some modeling results for the Metropolitan Area of Barcelona. 
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